NSF Air Quality Observatory:AQ Observatory Proposal

From Earth Science Information Partners (ESIP)
Revision as of 02:20, January 16, 2006 by Rhusar (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Project Summary - Early Draft

The multidisciplinary topic of Air Quality (air chemistry, meteorology, health science, ecology) is a national priority and it is pursued in diverse organizations (EPA, NOAA, NASA, Regional and State Agencies etc.) , each organization being both a producer and consumer of AQ-related information. This 'messy' information system is further complicated by the fact that the value chain that turns raw AQ data into 'actionable knowledge' for decision making has many steps; the data processing nodes are distributed among different organizations and many nodes include human 'processors'. While in the past the AQ science and management system has worked, these were hampered by the marginal support from a suitable information flow infrastructure. This problem of AQ information access, integration and delivery will be greatly exacerbated in the near future. The current revolution in both satellite remote sensing and surface air chemistry measurements delivers higher quality and much higher quantity of AQ data that need to assimilated into the AQ analysis systems. Air quality simulation and forecast models now also require more input verification, assimilation and augmentation. At the same time, use of AQ information by AQ managers at federal and state levels is is being transformed from command-and-control to more flexible 'weight-of-evidence' style. Added to these changes is the emergence a new cooperative spirit exemplified in the Global Earth Observation System of Systems (GEOSS, 60 + nation membership), where Air Quality is identified as one of the near-term opportunities for demonstrating the benefits of GEOSS. The increased supply and the demand for highly refined, just-in-time air quality information is a grand challenge for both information science and environmental science communities.

Fortunately, recent developments and convergence of various information technologies can close the gap between the AQ information supply-demand. A particularly value can be added by a web-based cyberinfrastructure that can benefit virtually all components of the information system.....Internet II , Cyber stuff in NSF, NASA, NOAA, EPA as well as industry....  

The IT to be used in the proposed AQ Observatory fall into three categories:

(1) Data access and homogenization using standard data exchange protocols, e.g Web Coverage Service (OGC-WCS), Unidata THREDDS middleware for data discovery and use; and test beds that assure the data exchange is indeed interoperable, e.g. Unidata-OGC GALEON Interoperability Experiment/Network. [more here]

(2) The novel technology development will focus on the framework for building distributed data analysis applications using loosely coupled web services. By these technologies, applications can be built dynamically 'orchestrating' the information processing components. .....[to perform an array of user-defined processing applications]. The user-configurable applications will include Analysts Consoles for real-time monitoring and analysis of air pollution events, workflow programs for more elaborate processing and tools for intelligent multi-sensory data fusion. Some of these technologies are already part of the CAPITA DataFed access and analysis system, developed through support from NSF, NASA, EPA and other agencies. ..... [more on evolvable, fault tolerance...from Ken Goldman here]

(3) Support for networked community interactions by creating web-based communication channels, aid cooperation through the sharing and reuse of multidisciplinary (air chemistry, meteorology, etc) AQ data, services and tools and by providing infrastructure support for group coordination among researchers, managers for achieving common objectives such as research, management and educational projects. [Unidata community support]

The proposed Air Quality Observatory prototype will demonstrate the benefits of the IIT through two use cases that are both integrating [cross-cutting] and make a true contribution to AQ science and management.

(1) Nitrate Anomaly. Over the last two years, a mysterious pollutant source has caused the rise of pollutant levels in excess of the AQ standard over much of the Upper Midwest in the winter/spring. Nitrogen sources are suspected since a sharp rise in nitrate aerosol is a key air component. The phenomenon has eluded detection and quantification since the area was not monitored but recent intense sampling campaigns have implicated NOX and Ammonia release from agricultural fields during snow melt. This AQO use case will integrate and facilitate access to data from soil quality, agricultural fertilizer concentration and flow, snow chemistry, surface meteorology and air chemistry.

(2) Exceptional Events. The second AQO use case will be demonstration of real-time data access/processing/delivery/response system for Exceptional Events (EE). Exceptional AQ events include, smoke from natural and some anthropogenic fires, windblown dust events, volcanoes and also long range pollution transport events from sources such as other continents. A key feature of exceptional events is that they tend to be episodic with very high short-term concentrations. The AQO information prototype system needs will provide real-time characterization and near-term forecasting, that can be used for preventive action triggers, such as warnings to the public. Exceptional events are also important for long-term AQ management since EE samples can be flagged for exlosion from the National Ambient Air Quality Standards calculations. The IIT support by both state agencies and fedral gov...[need a para on the IIT support to global science e.g. IGAC projets]

The exploratory data analysis tools will seamlessly access these data, facilitate data integration and fusion operations and allow user-configuration of the analysis steps. ...[including simple diagnostic AQ models driven by data in the Unidata system]. The resulting insights will help developing AQ management responses to the phenomenon and contribute to the scientific elucidation of this unusual phenomenon. [cyberinfrastructure-long end-to-end value chain, many players]. 

Use case selection driven by user needs: [letter form LADCO on nitrate], [letter from EPA for Exceptional Event]. Both use cases will be end-to end, real data produces, mediators and users. .Prototype will be seamless data discovery and access, flexible analysis tools, delivery - Prototype a part of a real decision support system by EPA, state orgs.

The infrastructure will goal of this project is to build an infrastructure to support the science, management and education related to Air Quality. The prototype Air Quality Observatory (AQO) will integrate AQ-relevant data, from surface, satellite and other sensors, provide data analysis tools for agile, analyst-configurable data processing. The users of the prototype will be

The AQO project will be lead by Rudolf Husar and Ben Domenico. Husar is Professor of Mechanical engineering and director of the Center for Air Pollution Impact and Trend Analysis (CAPITA) and brings 30+ years of experience in AQ analysis and environmental informatics to AQO project. Ben Domenico is Deputy Director of Unidata. Since its inception in 1983, Domenico was an engine that turned Unidata into one of the earliest examples of successful cyberinfrastructure, providing data, tools and general building support to the meteorological research and education community. CAPITA and Unidata with their rich history and the experience of their staff will be the pillars of the AQO. The active members of the AQO network will be from the ranks of data providers, data users and value-adding 'complementors' (mediators-processors). The latter group will consist of existing AQ research projects funded by EPA< NASA, NOAA, NSF that have data, tools, or expertise to contribute to the shared AQO pool. The communication venue for the AQO will be through the Earth Science Information Partners (ESIP), as part of the Air Quality Cluster [agancy/organization neutral].

The governance of the Observatory [Ben/Dave Fulker help here]....