Difference between revisions of "Data Quality and Validation White Paper Kick-off, GSFC"

From Federation of Earth Science Information Partners
(Created page with "==White Paper on Data Quality and Validation Framework for RS data: Best practices and user perspective== # Objective: Capture, harmonize and provide useful data quality for RS d...")
 
Line 1: Line 1:
==White Paper on Data Quality and Validation Framework for RS data: Best practices and user perspective==
+
==""White Paper on Data Quality and Validation Framework for RS data: Best practices and user perspective""==
# Objective:
+
# "Objective":
 
Capture, harmonize and provide useful data quality for RS data
 
Capture, harmonize and provide useful data quality for RS data
  
# Current Status:
+
# "Current Status":
 
* No coordinate approach ... besides QA4EO, WGCV and some discipline-specific efforts
 
* No coordinate approach ... besides QA4EO, WGCV and some discipline-specific efforts
 
* Duplication of efforts across missions - inefficient utilization of funding
 
* Duplication of efforts across missions - inefficient utilization of funding
Line 11: Line 11:
 
* Fitness for purpose: quality need should depend on data usage but the current quality is based on validation that has the specific purpose of validating instrument and retrieval algorithms
 
* Fitness for purpose: quality need should depend on data usage but the current quality is based on validation that has the specific purpose of validating instrument and retrieval algorithms
  
# Suggested approach:
+
# "Suggested approach":
 
* Collect best practices from various communities and known efforts
 
* Collect best practices from various communities and known efforts
 
* Develop consistent terminology and metrics, e.g., completeness, consistency, representativeness
 
* Develop consistent terminology and metrics, e.g., completeness, consistency, representativeness
 
* Identify main purpose classes and establish a high-level Q-metrics levels for different purposes
 
* Identify main purpose classes and establish a high-level Q-metrics levels for different purposes
 
*
 
*

Revision as of 15:54, December 22, 2010

""White Paper on Data Quality and Validation Framework for RS data: Best practices and user perspective""

  1. "Objective":

Capture, harmonize and provide useful data quality for RS data

  1. "Current Status":
  • No coordinate approach ... besides QA4EO, WGCV and some discipline-specific efforts
  • Duplication of efforts across missions - inefficient utilization of funding
  • Validation:
    • L2: validate in some areas and extrapolate globally. Issues: filtering by QC flag doesn't necessarily lead to good product
    • L3: what is L3 validation?
  • Fitness for purpose: quality need should depend on data usage but the current quality is based on validation that has the specific purpose of validating instrument and retrieval algorithms
  1. "Suggested approach":
  • Collect best practices from various communities and known efforts
  • Develop consistent terminology and metrics, e.g., completeness, consistency, representativeness
  • Identify main purpose classes and establish a high-level Q-metrics levels for different purposes