Difference between revisions of "AeroCom/Recommendations"

From Earth Science Information Partners (ESIP)
 
(2 intermediate revisions by 2 users not shown)
Line 14: Line 14:
  
 
*Evaluate and compare global aerosol models
 
*Evaluate and compare global aerosol models
*Compare aersol observations and models
+
*Compare aeorsol observations and models
*Improve the global aerosol models
+
*Improve global aerosol models
 
*Derive useful products
 
*Derive useful products
  
===Organisational===
+
===Organizational===
  
 
It is suggested to establish working groups for major
 
It is suggested to establish working groups for major
problems associated to the modelling of the aerosol  
+
problems associated with the modelling and understanding of the aerosol  
 
life cycle and aerosol properties. Each working group
 
life cycle and aerosol properties. Each working group
 
is asked to establish a work plan by December 2006,
 
is asked to establish a work plan by December 2006,
 
which indicates proposed diagnostics, experiments and
 
which indicates proposed diagnostics, experiments and
analysis tasks.
+
analysis tasks. A synthesis is drawn from this discussion
 +
eventually in form of a joint publication.
  
 
The definition of the AeroCom working groups and  
 
The definition of the AeroCom working groups and  
Line 31: Line 32:
 
an interactive, transparent '''[[AeroCom]]''' wiki page.
 
an interactive, transparent '''[[AeroCom]]''' wiki page.
  
The workshop recommends a coordinating committee to be formed
+
It is recommended to form a coordinating committee
 
from the lead persons of the working groups. The following
 
from the lead persons of the working groups. The following
working groups are put in place first: Consolidation of  
+
working groups are put in place: Consolidation of  
 
AeroCom data base, Emissions, Use of satellite data, Dust,  
 
AeroCom data base, Emissions, Use of satellite data, Dust,  
 
Vertical profiles and transport and removal, Closure at super sites,
 
Vertical profiles and transport and removal, Closure at super sites,
Line 42: Line 43:
  
 
As overall coordinator are proposed Michael Schulz, Mian Chin
 
As overall coordinator are proposed Michael Schulz, Mian Chin
and Stefan Kinne
+
and Stefan Kinne.
  
 
The AeroCom initiative shall be further developed such, that
 
The AeroCom initiative shall be further developed such, that
Line 54: Line 55:
 
===Subgoals===
 
===Subgoals===
 
To improve the analysis of the aerosol anthropogenic forcing in effect for the
 
To improve the analysis of the aerosol anthropogenic forcing in effect for the
4th AR IPCC simualtion, it is suggested that AeroCom
+
4th AR IPCC simualtions, it is suggested that AeroCom
 
coordinates an a-posteriori analysis by asking model groups to calculate  
 
coordinates an a-posteriori analysis by asking model groups to calculate  
 
the radiative forcing for two years (present and preindustrial) of
 
the radiative forcing for two years (present and preindustrial) of
the total aerosol, long lived greenhouse gases and other short-lived  
+
the total aerosol (direct and 1st indirect effect),  
anthropogenic species.
+
long lived greenhouse gases and other short-lived anthropogenic species.
  
 
It is suggested to develop comparable diagnostics of  
 
It is suggested to develop comparable diagnostics of  
 
aerosol effects in coupled aerosol-climate simulations.
 
aerosol effects in coupled aerosol-climate simulations.
Among these is a proposition to keep track of the  
+
Among these diagnostics should be a record of the  
evolution of aerosol radiative forcing in 20th century.
+
evolution of aerosol radiative forcing in the 20th century,
 +
eventually in steps of 10-20 years.
  
Interested groups may coordinate work on efficient ways
+
Coordination is suggested to work out efficient ways
 
to integrate complex aerosol models in coupled climate
 
to integrate complex aerosol models in coupled climate
simulations. Of interest would be to Investigate how complex  
+
simulations. Of interest would be to investigate how complex  
 
an aerosol model needs to be to study aerosol climate feedbacks.
 
an aerosol model needs to be to study aerosol climate feedbacks.
 
The use of an aerosol climatology from AeroCom as input to  
 
The use of an aerosol climatology from AeroCom as input to  
 
climate models may be proposed.
 
climate models may be proposed.
  
Deviating from former IPCC scenarios an updated publicly available emission  
+
Deviating from former IPCC scenarios an updated public emission  
 
scenario for all aerosol species and precursors is needed for
 
scenario for all aerosol species and precursors is needed for
 
three time periods :
 
three time periods :
Line 83: Line 85:
 
to explore uncertainty with respect to emissions.
 
to explore uncertainty with respect to emissions.
 
Sector related emissions are needed to differentiate anthropogenic
 
Sector related emissions are needed to differentiate anthropogenic
emissions and reconstruction of different pathways.
+
emissions and a reconstruction of different economic pathways.
  
A preliminary AeroCom version is required to be available for the year 2007
+
A preliminary long-term emission scenario version is required to be available  
to be used to produce at an early stage an aerosol climatology of concentrations  
+
to AeroCom for the year 2007, in order to be used to produce  
for realistic aerosol-climate runs.
+
e.g. at an early stage an aerosol climatology of concentrations  
 +
for other climate simulations.
  
 
AeroCom recognizes the important role of other initiatives  
 
AeroCom recognizes the important role of other initiatives  
Line 93: Line 96:
 
scenarios and strongly proposes open cooperation among these to allow
 
scenarios and strongly proposes open cooperation among these to allow
 
for independent testing of different scenarios by different
 
for independent testing of different scenarios by different
transport modelling groups. The AeroCom emission working
+
climate and transport modelling groups. The AeroCom emission working
 
group is asked to elaborate practical suggestions
 
group is asked to elaborate practical suggestions
 
for harmonized, widely available emission scenarios.
 
for harmonized, widely available emission scenarios.
 
Its role would be to express the interest of the AeroCom
 
Its role would be to express the interest of the AeroCom
community in emissions, to recommend ways to implement
+
community in obtaining emissions, to recommend ways to implement
 
emissions consistently in different models and to propose
 
emissions consistently in different models and to propose
 
diagnostics to document microphysical properties of
 
diagnostics to document microphysical properties of
 
emitted primary aerosols.
 
emitted primary aerosols.
 
The needs of AeroCom are best met by progress on the automatization of model documentation,
 
the longterm maintenance of tha AeroCom database and the application of formatting standards
 
as suggested under [[Air_Quality/Chemistry_Naming_Conventions]]
 
in the framework of HTAP. AutoMod (developed for OCMIP) is
 
expected to be a suitable tool for this automatization task.
 
Furthermore data and diagnostics need to be integrated into benchmark tests
 
to make full use of such an automated model analysis tool.
 
  
 
AeroCom acknowledges the specific need to prepare and discuss
 
AeroCom acknowledges the specific need to prepare and discuss
Line 116: Line 111:
 
The discrepancy between the basic modelled quantity of mass concentrations  
 
The discrepancy between the basic modelled quantity of mass concentrations  
 
and the observation of optical properties from satellites is  
 
and the observation of optical properties from satellites is  
put to the attention of the working group. An explicit link is  
+
put to the attention of the working group. A cooperation is  
 
recommended with the ongoing GEWEX Global Aerosol Products Assessment.
 
recommended with the ongoing GEWEX Global Aerosol Products Assessment.
  
The importance of the aerosol indirect effect requires a  
+
The importance of the aerosol indirect effects requires a  
 
continuation of the existing working group and a redesign
 
continuation of the existing working group and a redesign
of the first set of indirect experilents. It is proposed to
+
of the first set of indirect experiments. It is proposed to
 
prepare a data inventory and to determine associated diagnostics.
 
prepare a data inventory and to determine associated diagnostics.
Of special value may be to attempt for CCN closure,
+
It will be attempted to work on CCN closure,
 
to look for combined aircraft/field experiments, to extend to in situ datasets,
 
to look for combined aircraft/field experiments, to extend to in situ datasets,
to investigate droplet closure, observed drizzle rate,
+
to investigate droplet closure and observed drizzle rates,
effective radius, cloud top temperature.
+
effective radius and cloud top temperature.
 
Single column model experiments may be useful, when field data are available.
 
Single column model experiments may be useful, when field data are available.
 
It is suggested to coordinate with the DOE ARM MPACE SCM experiments.
 
It is suggested to coordinate with the DOE ARM MPACE SCM experiments.
 
To harmonize the diagnostics of the first and second indirect effects,
 
To harmonize the diagnostics of the first and second indirect effects,
to separate the various indirect and semidirect effects it is  
+
and to separate the various indirect and semidirect effects it is  
 
recommended to include diagnostics as suggested in the literature by
 
recommended to include diagnostics as suggested in the literature by
 
Hansen et al JGR 2005  and Kristjannson.  
 
Hansen et al JGR 2005  and Kristjannson.  
 
Data to look at: AMSR, CERES, A train data subset from Langley ASDC,  
 
Data to look at: AMSR, CERES, A train data subset from Langley ASDC,  
 
CALIPSO aerosol-cloud subset, ARM sites, CMDL sites.
 
CALIPSO aerosol-cloud subset, ARM sites, CMDL sites.
 
Additional indirect effect intercomparison experiments require
 
a revisit of the diagnostics.
 
 
 
  
 
It is recommended to put emphasis on regional and event specific analyses  
 
It is recommended to put emphasis on regional and event specific analyses  
 
for specific aerosol components and collect airborne and other data sets  
 
for specific aerosol components and collect airborne and other data sets  
(in situ, lidar, etc.) to address specific modeling issue. Although difficulties
+
(in situ, lidar, etc.) to address specific modeling issues. Although difficulties
 
are expected when matching and comparing small data sets and models it is
 
are expected when matching and comparing small data sets and models it is
 
thought that it is now necessary to move beyond AERONET and satellite  
 
thought that it is now necessary to move beyond AERONET and satellite  
AOT comparisons. Basic aerosol properties need to be incorporated
+
retrieved AOT comparisons. Basic aerosol properties need to be incorporated
 
in the AeroCom analysis such as size distribution, absorption,  
 
in the AeroCom analysis such as size distribution, absorption,  
 
vertical distribution, deposition, horizontal transport, the anthropogenic
 
vertical distribution, deposition, horizontal transport, the anthropogenic
Line 158: Line 148:
 
eventually under known or controlled humidity.  
 
eventually under known or controlled humidity.  
  
It is advocated to have a specific working group to address absorption.
+
It is advocated to have a specific working group to address  
 +
atmospheric absorption.
  
 
To initiate the preparation of benchmark tests for the purpose
 
To initiate the preparation of benchmark tests for the purpose
 
of aerosol model evaluation it is proposed to establish
 
of aerosol model evaluation it is proposed to establish
 
a diagnostic table, following the example of the ccmVAL initiative.
 
a diagnostic table, following the example of the ccmVAL initiative.
This tanle shall link important Processes, Diagnostics, Variables, Data  
+
This table shall link important Processes, Diagnostics, Variables, Data  
 
and available references.
 
and available references.
  
 +
The technical needs of AeroCom are best met by progress on the automatization of model documentation,
 +
the longterm maintenance of tha AeroCom database and the application of formatting standards
 +
as suggested under [[Air_Quality/Chemistry_Naming_Conventions]]
 +
in the framework of HTAP. AutoMod (developed for OCMIP) is
 +
expected to be a suitable tool for this automatization task.
 +
Furthermore data and diagnostics need to be integrated into benchmark tests
 +
to make full use of such an automated model analysis tool.
  
 
===Joint Experiments===
 
===Joint Experiments===
Line 171: Line 169:
 
The recommendations for additional diagnostics and experiments
 
The recommendations for additional diagnostics and experiments
 
shall be co-ordinated after the initial discussion in the working
 
shall be co-ordinated after the initial discussion in the working
groups has concluded in December 2006. The goal would be to  
+
groups will be concluded in December 2006. The goal would be to  
initiate a revised set of some few joint AeroCom experiments.
+
propose a revised set of some few joint AeroCom experiments.
The list below is an initial input for consideration of the
+
The list below is an initial proposition for consideration of the
 
different working groups.
 
different working groups.
  
Line 188: Line 186:
  
  
*HTAP experiments SR1 and SR6 and SR7
+
*HTAP experiments SR1 and SR6 and TP1
 
Hemispheric transport of air pollution analysis of source receptor relationships
 
Hemispheric transport of air pollution analysis of source receptor relationships
 
Diagnostics PM and AOD (and gases), Reduction by 20% of anthropogenic
 
Diagnostics PM and AOD (and gases), Reduction by 20% of anthropogenic

Latest revision as of 11:45, November 27, 2006

AeroCom wiki discussion entry

See also AeroCom/Working group structure


Recommendations for AeroCom phase II

Version 1.0 - summarising discussions during the 5th AeroCom workshop in Virginia Beach, 17-19 October 2006

Michael Schulz / LSCE

Goals

  • Evaluate and compare global aerosol models
  • Compare aeorsol observations and models
  • Improve global aerosol models
  • Derive useful products

Organizational

It is suggested to establish working groups for major problems associated with the modelling and understanding of the aerosol life cycle and aerosol properties. Each working group is asked to establish a work plan by December 2006, which indicates proposed diagnostics, experiments and analysis tasks. A synthesis is drawn from this discussion eventually in form of a joint publication.

The definition of the AeroCom working groups and their coordination is planned to be done via an interactive, transparent AeroCom wiki page.

It is recommended to form a coordinating committee from the lead persons of the working groups. The following working groups are put in place: Consolidation of AeroCom data base, Emissions, Use of satellite data, Dust, Vertical profiles and transport and removal, Closure at super sites, Air Quality, Absorption, Direct forcing, Indirect forcing, Aerosol-climate simulations, Aerosol Microphysics. As working group leads are proposed Schulz, Bond, Kinne, Ginoux, Textor, Wilson, Chin, Koch, Myhre, Penner and Liu.

As overall coordinator are proposed Michael Schulz, Mian Chin and Stefan Kinne.

The AeroCom initiative shall be further developed such, that it may contribute as the aerosol component to the « Atmospheric Chemistry and Climate » initiative of WCRP and IGAC.

A cooperation with the HTAP initiative on joint analysis of aerosol experiments performed under HTAP is pursued.

Subgoals

To improve the analysis of the aerosol anthropogenic forcing in effect for the 4th AR IPCC simualtions, it is suggested that AeroCom coordinates an a-posteriori analysis by asking model groups to calculate the radiative forcing for two years (present and preindustrial) of the total aerosol (direct and 1st indirect effect), long lived greenhouse gases and other short-lived anthropogenic species.

It is suggested to develop comparable diagnostics of aerosol effects in coupled aerosol-climate simulations. Among these diagnostics should be a record of the evolution of aerosol radiative forcing in the 20th century, eventually in steps of 10-20 years.

Coordination is suggested to work out efficient ways to integrate complex aerosol models in coupled climate simulations. Of interest would be to investigate how complex an aerosol model needs to be to study aerosol climate feedbacks. The use of an aerosol climatology from AeroCom as input to climate models may be proposed.

Deviating from former IPCC scenarios an updated public emission scenario for all aerosol species and precursors is needed for three time periods :

  • preindustrial to present
  • satellite observation period (1979-2005)
  • preindustrial to the near future (2030 and 2100)

Unless other propositions become a priority it is suggested to use a median, a minimum and maximum scenario to explore uncertainty with respect to emissions. Sector related emissions are needed to differentiate anthropogenic emissions and a reconstruction of different economic pathways.

A preliminary long-term emission scenario version is required to be available to AeroCom for the year 2007, in order to be used to produce e.g. at an early stage an aerosol climatology of concentrations for other climate simulations.

AeroCom recognizes the important role of other initiatives ( such as GEIA, EMF, EDGAR, IPCC WG2) to establish emission scenarios and strongly proposes open cooperation among these to allow for independent testing of different scenarios by different climate and transport modelling groups. The AeroCom emission working group is asked to elaborate practical suggestions for harmonized, widely available emission scenarios. Its role would be to express the interest of the AeroCom community in obtaining emissions, to recommend ways to implement emissions consistently in different models and to propose diagnostics to document microphysical properties of emitted primary aerosols.

AeroCom acknowledges the specific need to prepare and discuss the use of satellite products for model evaluation. A working group could prepare ways on how to interface measurements and datasets with model input and how to get proper datasets prepared for use in models. The discrepancy between the basic modelled quantity of mass concentrations and the observation of optical properties from satellites is put to the attention of the working group. A cooperation is recommended with the ongoing GEWEX Global Aerosol Products Assessment.

The importance of the aerosol indirect effects requires a continuation of the existing working group and a redesign of the first set of indirect experiments. It is proposed to prepare a data inventory and to determine associated diagnostics. It will be attempted to work on CCN closure, to look for combined aircraft/field experiments, to extend to in situ datasets, to investigate droplet closure and observed drizzle rates, effective radius and cloud top temperature. Single column model experiments may be useful, when field data are available. It is suggested to coordinate with the DOE ARM MPACE SCM experiments. To harmonize the diagnostics of the first and second indirect effects, and to separate the various indirect and semidirect effects it is recommended to include diagnostics as suggested in the literature by Hansen et al JGR 2005 and Kristjannson. Data to look at: AMSR, CERES, A train data subset from Langley ASDC, CALIPSO aerosol-cloud subset, ARM sites, CMDL sites.

It is recommended to put emphasis on regional and event specific analyses for specific aerosol components and collect airborne and other data sets (in situ, lidar, etc.) to address specific modeling issues. Although difficulties are expected when matching and comparing small data sets and models it is thought that it is now necessary to move beyond AERONET and satellite retrieved AOT comparisons. Basic aerosol properties need to be incorporated in the AeroCom analysis such as size distribution, absorption, vertical distribution, deposition, horizontal transport, the anthropogenic fraction, dust properties, the link between surface and column properties and hygroscopic growth of the aerosol.

Of special value are super sites where a co-location of surface measurements (e.g. IMPROVE, AERONET, MPLnet, GAW, EUSAAR etc ) exist, which allow to look also in extensive aerosol properties such as BC/SU ratios, forcing efficiency, mass and absorption coefficients, eventually under known or controlled humidity.

It is advocated to have a specific working group to address atmospheric absorption.

To initiate the preparation of benchmark tests for the purpose of aerosol model evaluation it is proposed to establish a diagnostic table, following the example of the ccmVAL initiative. This table shall link important Processes, Diagnostics, Variables, Data and available references.

The technical needs of AeroCom are best met by progress on the automatization of model documentation, the longterm maintenance of tha AeroCom database and the application of formatting standards as suggested under Air_Quality/Chemistry_Naming_Conventions in the framework of HTAP. AutoMod (developed for OCMIP) is expected to be a suitable tool for this automatization task. Furthermore data and diagnostics need to be integrated into benchmark tests to make full use of such an automated model analysis tool.

Joint Experiments

The recommendations for additional diagnostics and experiments shall be co-ordinated after the initial discussion in the working groups will be concluded in December 2006. The goal would be to propose a revised set of some few joint AeroCom experiments. The list below is an initial proposition for consideration of the different working groups.

  • AeroCom D

(as AeroCom A but revised model versions and diagnostics for purpose of further analysis of problems found earlier in AeroCom)

  • AeroCom-Calipso

An initial reanalysis of two early months of the Calipso mission could provide early on important insight into the capability of models to simulate the vertical profile of aerosols. Suggested: August and September 2006, including Texas campaign, AMMA, boreal fire periods.


  • HTAP experiments SR1 and SR6 and TP1

Hemispheric transport of air pollution analysis of source receptor relationships Diagnostics PM and AOD (and gases), Reduction by 20% of anthropogenic Emissions in Asia, Europe and N-America, CO passive tracer experiment.

  • AeroCom F

Fixed monthly 3d removal rates (and emissions) prescribed, to eliminate diversity due to differing removal process parameterisations

  • Reanalysis of 4th AR IPCC experiments

Radiative forcing calculation for coupled model versions used for AR4. Rerun of a characteristic pre-industrial and present year with full RF diagnostics Coherent diagnostics with AeroCom database

  • AeroCom Indirect II

Follow up of Penner et al. 2006 experiment suite. Re-designed diagnostics.

  • Reanalysis of aerosol (and climate) evolution in 20th century

Compute all or segments of 20th century until 2005 with analysed meteorology or transient climate model

  • Future median/high/low aerosol emission scenarios with aerosol-climate interactions

In preparation of the 5th AR IPCC;