AIP AQ Scenario B: Model - Data Synthesis

From Earth Science Information Partners (ESIP)
Revision as of 01:01, January 31, 2008 by TerryKeating (talk | contribs)

<Back to AQ Pilot Scenario Workspace

Scenario B: Model - Data Synthesis

This is an attempt to broaden the scope of the AQ scenario beyond fire events. It is motivated by a concern that a focus on fire events will not lead to developments that are applicable to more generalized issues with respect to air quality assessment and forecasting.

Summary

Provide a summary of the scenario and the community that the scenario supports.

Air pollution is a serious public health and environmental issue contributing to hundreds of thousands of premature deaths per year globally and even greater impacts in terms of increased respiratory illness and hospitalization. Air pollution also does not respect jurisdictional boundaries and is affected by sources and processes over local, regional, intercontinental, and global scales. Some of the most challenging pollutants to address, such as ground-level ozone and fine particles, are not emitted directly but are produced or transformed in the atmosphere from other directly emitted pollutants through non-linear chemical and physical processes. To understand, forecast, and manage air quality, it is necessary to rely on computer models of these atmospheric chemical and physical processes to make predictions about how changes in meteorology or emissions will change air pollution concentrations and exposures. However, computer models, which by their nature are incomplete and inaccurate descriptions of the real world, must be evaluated against observations to ensure that they are useful descriptions of the conditions or processes of interest. The most useful model evaluation would draw upon observational data for a variety of atmospheric constituents (including precursors and chemical intermediates) from different observational platforms (surface monitoring networks, satellites, sondes, ground-based remote sensors, aircraft, ...) creating a rich 4-dimensional description of the atmosphere for a given region and time period.

This scenario envisions a network of air quality information systems and tools that can be used by an analyst to bring together a wide variety of observational data to compare to concentrations (or emissions, deposition, fluxes, ...) estimated using a regional or global atmospheric model. Such an air quality model "test bed" would be for direct use by air quality modelers in scientific institutions and air quality management agencies at the local, regional, and national levels. Indirectly, such a "test bed" would lead to better air quality models, better air quality forecasts, better air quality management policies, and improved public health and environmental protection. The connectivity and tools needed to perform such model evaluation tasks will also enable many other types of air quality-related analyses.

Identify the specific decisions to be made.

Provide references for additional information.

Context and pre-conditions

Identify the actors in the scenario. Actors are any persons involved in the scenario.

The actors in the smoke scenario include data/information providers, data processors and specialists to deliver tailored information products to the public, AQ managers and scientists. A key set of actors are the actual decision makers ...who interact with the ??.... (this needs work Rhusar)

  • National Environmental agency
  • National Meteorological agency
  • National Health agency (if separate from National Environmental agency)
  • National Land Management agency
  • National Space agency
  • Local Environmental agencies
  • Local emergency personnel
  • Consulting companies
  • GEOSS Portal integrator? (took from Energy scenario)
  • Local, Regional and National media (print, online, broadcast)
  • Public

List, at a summary level, the specific information assumed to be available before the scenario begins.

Information available before scenario begins (via GEOSS portals)

  • Meteorological data
    • Observed and forecasted surface meteorological data (such as temperature, surface wind speed and direction, humidity)
    • Observed and forecasted aloft large-scale (1000 km or more) atmospheric parameters (such as 850 and 500 millibar heights, temperature, wind speed, dew point)
    • HYSPLIT trajectories (NAM/NDAS Models (40km) - forward trajectories can be used to estimate the transport direction and potential time the smoke or dust might enter a particular forecast region
  • Geographical data
    • land use for knowing affected and forecast areas
    • demographic data for understanding impacted population: different age groups have different sensitivities to poor AQ, for example
    • fuel type - important input for smoke models BlueSky RAINS
  • Air Quality information
    • Particle pollution ground observations (for United States and Canada, EEA?)
    • Air quality forecasts for particle pollution areas (for United States, AIRNow, Canada, Europe – EEA)
    • Established air quality programs which issue public alerts
  • Air Quality Numerical Forecast Models?
  • Satellite data
  • Specific processing
    • collection / QC of ambient air quality data by an air quality data management system
    • local or regional air quality forecast generated by numerical model (requiring air quality and meteorological data) or human forecaster
    • integrating air quality data, forecasts with available satellite data products
    • develop context and understanding of air quality conditions and forecasts for the event
    • develop and issue communication piece to decision-makers and/or public
    • distribute data/information through established channels
  • GUI development and GEOSS portal integration
    • Exploit Web service description (GEOSS portal integrator)
    • Build GUI (GEOSS portal integrator)
    • map / image production for release to media, public
    • distribute data/information/graphics
    • ?

List, at a summary level, the specific processing and collaboration functionality assumed needed in the scenario.

  • Convenient functionality to register smoke-relevant components in the GEOSS Registry
  • GEOSS-compatible smoke portal used and maintained (?) by the Smoke Community of Practice
  • Identification and accessing the relevant monitoring data (surface, upper air and satellite) using the publish-find-bind SOA protocol
  • Data sharing and integration functionality including (1) registry/catalog for finding resources (2) standard-based access to spatio-temporal data and metadata, workflow software for integrating Service Components
  • Harvesting the data sources from "other" agencies/organizations, Public contributions of first-hand reports, images, videos...
  • A workspace to support the activities of the Smoke Community of Practice, including communal resources on the specific smoke event (and smoke in general?), are assembled ... other Decision Support System functionality... ??
  • Ability to produce near-real-time reports that characterize the smoke event for the Public, AQ managers and Scientists.

Scenario Events

Elaborate the steps that result in the creation of decision support products developed in collaboration by the actors.

Use the table to identify the main sequence of events in the scenario, including alternative branch steps.

  • Develop connections between existing repositories of air quality related information and tools for integrated analysis of observational data and comparison to models. E.g. HTAP Data Network Proposal
  • Develop tools for analysis and assimilation of observational data into atmospheric models and other decision support systems in near real time for producing air quality forecasts. i.e. AIRNow, IDEA
  • Develop a virtual observatory for collaborative exploration of large events and ...



  1. Designated and voluntary observers will use a 'virtual observatory' to monitor the current aerosol 'weather' situation over their region of interest (e.g. North America, Central America, Europe, Asia? - do we need to spell out regions? ).
  2. The observers scan the spatial, temporal aerosol pattern on the real-time satellite images, surface monitors, as well as monitoring the electronic media and private citizen reports.
  3. Once an ‘interesting’ smoke event appears, the observers explore the pattern of other peripheral data sources such as weather pattern, trajectories and other monitors to ascertain the emergence of a smoke event.
  4. Throughout the event’s emergence, the observers share their observations and views on a shared virtual workspace, including the the deliberations whether to issue alert(s).
  5. Using standardized Common Notification Protocol), alert(s) are issued to different groups (Public, Regulatory, Science - see) that may need to act or who are interested in observing/participating in smoke monitoring or response action action.
  6. In response to the alert, more intense monitoring and just-in-time analysis is initiated. This includes additional sampling, high resolution targeted smoke source/dispersion modeling, harvesting of other real-time data resources etc.
  7. As the smoke event evolves, a virtual workgroup of analysts summarizes the smoke situation, including sources, transport, aerosol pattern, forecast and impact in a manner suitable for multiple user communities, Public, Regulatory and Science.
  8. Based on those reports and other input, during the smoke event, a multiplicity of decisions and actions are executed by Public, Regulatory and Scientific decision makers.
  9. Following the smoke event, the event is evaluated for its impact, consequences and possibly for detailed retrospective analysis.

Related Links