Preservation Ontology

From Earth Science Information Partners (ESIP)

Back to Preservation and Stewardship

About

Supporting the long-term preservation of Earth system science data and information is core of the Data Preservation and Stewardship Cluster. As such, a formalism is needed to codify the information. A future-looking approach is to leverage semantic web technologies to capture the knowledge representation and to enable flexible usage of this information.

Roadmap

We would like to start with practical use cases in preservation modeling, then work on a small and manageable model, and continually increment on a working design. Ideally, we should converge with support the information identified in the Provenance and Context Content Standard.

Some major steps planned:

1. Define what we would like from a "Preservation Ontology"

2. Define practical Use Cases

3. Extract high-level requirements

4. Adopt/reuse existing provenance models

5. Extend model with more focus on Earth science preservation

  • Include provenance and context

6. Infuse model into data systems

  • some aspects covered by ACCESS project(s)?

7. Updates and Refinements

Approach

Following the steps from the roadmap, the approach will also include the following:

  • Follow closely the Provenance and Context Content Standard.
    • e.g. processing history, data formats used, product development history, algorithms, ATBDs, product tools, QA, validation, software.
    • On preservation, do we want to model with provenance and/or context?
    • Mark P on provenance vs context:
      • provenance is for reproducibility.
      • context is for someone use the information for something else.
    • Bruce B additional comments
      • context information is probably usefully divided into
        • documentation, which is text, images, and tables that provide information about the Earth science data
        • other data, which will usually be numbers or strings that might be needed to understand the Earth science data. For example, if one were dealing with a digital glacier photo, a file with the latitude and longitude of each pixel might help a user understand the image
      • It is not clear what to do about some data that doesn't necessarily appear in the published data files, but is critical to the meaning of the Earth science data. Examples include calibration coefficients, radiative transfer parameters, or even supporting data, such as temperature and humidity profiles used as input (or, to back up one more step, the radiosonde or satellite data used to produce numerical weather forecasts)
  • Start with Open Provenance Model
  • Explore if possible to map some of the preservation model information to ISO 19115 - Metadata for Geographic Data?

Use Cases

Here are some initial grouping place holders:

Capturing preservation information

  • capturing data production provenance
  • capture data product context

Using preservation information

  • provenance for reproducibility
  • comparison of production runs from two granules.
  • context for reuse in other domains

Model

tbd

Infusion

tbd

References