Difference between revisions of "Dust"
Line 68: | Line 68: | ||
---- | ---- | ||
− | Thursday December | + | === Thursday December 14th 2006 Michael Schulz === |
Dear dust colleagues, | Dear dust colleagues, | ||
Line 87: | Line 87: | ||
have nice winter days! | have nice winter days! | ||
Michael | Michael | ||
+ | |||
+ | |||
+ | === Friday December 15th 2006, Ina Tegen === | ||
+ | |||
+ | |||
+ | Dear colleagues, | ||
+ | a dedicated AEROCOM-DUST analysis is a good idea and is quite timely considering the ever-increasing interest in dust aerosol, and I would be happy to contribute. I agree with Michael that some new experiments would be needed, which obviously have to be carefully designed. To have Paul lead a working group on this is great. I suggest to also include Stephanie Woodward from the Hadley Center in this exercise. (stephanie.woodward@metoffice.gov.uk). | ||
+ | |||
+ | After having looked at the WIKI page, here are some additional comments: | ||
+ | |||
+ | - What is the best choice for an anthropogenic dust source? While the estimates for total anthropogenic dust contribution to total dust are now considerably lower compared to the IPCC 2001 number, this emission and the geographical distribution is still very uncertain. In addition to ‘direct’ anthropogenic dust sources as from agricultural soil disturbance it would be nice to have a ‘second order’ anthropogenic dust source that is caused by anthropogenic climate change, ie present-preindustrial sources taking into account any changes in surface wind and precipitation as well as vegetation, such as estimated recently by Natalie. In addition to her results it would be useful to have additional estimates from other models to minimize a possible model dependence of these results. Maybe putting together a map of vegetation changes from different vegetation model results for the preindustrial to present can be helpful. | ||
+ | |||
+ | - A while ago I looked at the AEROCOM results for dust– it seemed that the differences between the results for Experiment B (fixed sources) were larger than to be expected from differences in deposition schemes alone (although these may be considerable too)- and indeed it seems that while everyone used the same emission fluxes they were distributed quite differently on the different particle sizes, due to the different treatments of size distribution in the models (mode vs bin schemes) and of course if the same mass it put into larger size bins, the atmospheric load depletes more quickly due to higher gravitational settling velocities, and the importance of the different deposition processes (as seen in the Figure included in the Wiki page)) partly differs simply due to this. It is crucial to pay attention to this for any new runs comparing results with identical dust source fluxes– if the effect of the different transport and deposition schemes are to be compared it has to be ensured that the sources are in fact identical, including identical initial size distribution. | ||
+ | |||
+ | - The choice of the dust refractive index is of course important for computing radiative flux changes, but to my knowledge no model uses yet refractive indices which vary with the source region to account eg for hematite/goethite content (my apologies if I have overlooked something here). Also, I see that you intend to compare Ca contents of the dust – this should also vary for the different source regions. So I am not sure if we can make any real progress by model intercomparison, apart from compiling | ||
+ | appropriate literature data. BTW, the German SAMUM dust experiment that took place in | ||
+ | Morocco past summer should have some very good data on dust optical properties by next year (the measurement results are currently still being analysed). | ||
+ | |||
+ | - Which should be the focus year(s) for those models which are driven by reanalysis fields or nudged meteorology? For the AEROCOM years I suggest to concentrate on 2001, which had Ace Asia, and some nice Saharan dust events. | ||
+ | If additional years will be simulated, I suggest 2006 of course, if we want to make use of Calipso data. Also, for this year eventually some results from the SAMUM and AMMA field campaigns results will become available. | ||
+ | |||
+ | - If this is possible it would be useful to perform an emissions only experiment in addition to the full atmospheric dust run to systematically compare the performance of the different schemes, e.g. computing dust emissions for the different schemes with identical surface wind speeds in addition to compute the fluxes with their own wind fields. Of course it will difficult to decide on the ‘best’ emission scheme by this as there are no global scale dust emission flux data, but a test of the performance could possibly be done be in terms of modelled ’emission events’ compared to meteorological dust storm data, IDDI, and TOMS AI > 0.7 (?)events (any other ideas?). | ||
+ | |||
+ | Regarding a telephone conference, sometime January would be fine. Having never set up one myself, I cannot offer any other suggestions on the best way to do this, sorry. | ||
+ | |||
+ | A happy holiday season to all of you, | ||
+ | Best wishes, Ina | ||
+ | |||
+ | |||
+ | ----------------------- | ||
+ | Dr. Ina Tegen | ||
+ | Leibniz Institute for Tropospheric Research Permoserstr. 15 | ||
+ | 04318 Leipzig | ||
+ | Germany | ||
+ | |||
+ | Tel.: +49 (0)341 235 2146 | ||
+ | Fax: +49 (0)341 235 2139 | ||
+ | Email: itegen@tropos.de |
Revision as of 09:06, January 4, 2007
AeroCom wiki discussion entry
Go back to AeroCom/Working group structure
See also summary of AeroCom/Recommendations
AeroCom working group DUST
Participants for analysis
Ginoux, Balkanski, Mahowald, Schulz, Winker, Mann, Takemura, Miller?, Tegen?, Zender?,
NEXT Telephone conference: 10th of January 17 UTC (= 18 Paris time, 12 ET, 10 Boulder Time?)
Goals
Investigate the possible impact of anthropogenic dust sources
Compare dust simulations to multiple observational datasets
Recommend properties for dust size and refractive index
Processes and possible Diagnostics
Dust erosion - wind frequency and speed ; threshold velocities; effective source fluxes; source size distribution
Dust settling - dry removal velocities per size bin;
Wet Dust removal - wet scavenging efficients; vertical distribution; wet deposition of Calcium, dust;
Scattering and absorption - refractive index; AOD; size; absorption
Short-term actions/experiments
Organise regular teleconferences
Prepare a natural and an anthropogenic dust source for a joint
experiment
Follow up on ideas from earlier Mahowald publications.
Assemble observations
(Visibility, IDDI, MISR, MODIS, MODIS Deepblue, Deposition, Aeronet,
Aeroce, Calipso, Asian dust observations, Ca concentrations in rain)
Retrieve from AeroCom database dust variables and wind speed fields
Eventually participate in dust conference in Italy
Data to look at
The AeroCom database has unanalysed data on dust deposition and wind speed statistics in some models.
Aeronet dust dominated sites
Refractive index and size in literature
Dust, Fe and Ca concentrations in air and precipitation
Satellite AOD in dust dominated regions (MISR, MODIS, TOMS, DEEPBLUE-MODIS, CALIPSO)
Fine mode AOD in dust regions?
Enter the DISCUSSION HERE
Thursday December 14th 2006 Michael Schulz
Dear dust colleagues,
Having met Nathalie and Paul in Paris during the GEIA conference I am motivated again for suggesting joint dust work. I think there is a good chance to get a better 'dust analysis' going on the basis of the AeroCom data. But we probably need to do/propose some additional experiments.
During the AeroCom workshop we have said that a working group should be installed and Paul kindly agreed to lead it (for now). As suggested by the meeting we intend to maintain wiki pages for joint discussion and I have set up one with basic initial thoughts:
http://wiki.esipfed.org/index.php/Dust
However - Nathalie and me thought that some few telephone conferences would be really helpful to get things going. I have no real experience but can only propose skype. Any better suggestion would be perfect!! I just tested: we could also download images on the wiki page prior/during a telecon. Not so complicated. I suggest you use the wiki page to enter propositions for a first teleconference.
Right now I am not sure we will manage to start before Christmas. But some reaction to this proposal would be nice,
have nice winter days! Michael
Friday December 15th 2006, Ina Tegen
Dear colleagues, a dedicated AEROCOM-DUST analysis is a good idea and is quite timely considering the ever-increasing interest in dust aerosol, and I would be happy to contribute. I agree with Michael that some new experiments would be needed, which obviously have to be carefully designed. To have Paul lead a working group on this is great. I suggest to also include Stephanie Woodward from the Hadley Center in this exercise. (stephanie.woodward@metoffice.gov.uk).
After having looked at the WIKI page, here are some additional comments:
- What is the best choice for an anthropogenic dust source? While the estimates for total anthropogenic dust contribution to total dust are now considerably lower compared to the IPCC 2001 number, this emission and the geographical distribution is still very uncertain. In addition to ‘direct’ anthropogenic dust sources as from agricultural soil disturbance it would be nice to have a ‘second order’ anthropogenic dust source that is caused by anthropogenic climate change, ie present-preindustrial sources taking into account any changes in surface wind and precipitation as well as vegetation, such as estimated recently by Natalie. In addition to her results it would be useful to have additional estimates from other models to minimize a possible model dependence of these results. Maybe putting together a map of vegetation changes from different vegetation model results for the preindustrial to present can be helpful.
- A while ago I looked at the AEROCOM results for dust– it seemed that the differences between the results for Experiment B (fixed sources) were larger than to be expected from differences in deposition schemes alone (although these may be considerable too)- and indeed it seems that while everyone used the same emission fluxes they were distributed quite differently on the different particle sizes, due to the different treatments of size distribution in the models (mode vs bin schemes) and of course if the same mass it put into larger size bins, the atmospheric load depletes more quickly due to higher gravitational settling velocities, and the importance of the different deposition processes (as seen in the Figure included in the Wiki page)) partly differs simply due to this. It is crucial to pay attention to this for any new runs comparing results with identical dust source fluxes– if the effect of the different transport and deposition schemes are to be compared it has to be ensured that the sources are in fact identical, including identical initial size distribution.
- The choice of the dust refractive index is of course important for computing radiative flux changes, but to my knowledge no model uses yet refractive indices which vary with the source region to account eg for hematite/goethite content (my apologies if I have overlooked something here). Also, I see that you intend to compare Ca contents of the dust – this should also vary for the different source regions. So I am not sure if we can make any real progress by model intercomparison, apart from compiling appropriate literature data. BTW, the German SAMUM dust experiment that took place in Morocco past summer should have some very good data on dust optical properties by next year (the measurement results are currently still being analysed).
- Which should be the focus year(s) for those models which are driven by reanalysis fields or nudged meteorology? For the AEROCOM years I suggest to concentrate on 2001, which had Ace Asia, and some nice Saharan dust events. If additional years will be simulated, I suggest 2006 of course, if we want to make use of Calipso data. Also, for this year eventually some results from the SAMUM and AMMA field campaigns results will become available.
- If this is possible it would be useful to perform an emissions only experiment in addition to the full atmospheric dust run to systematically compare the performance of the different schemes, e.g. computing dust emissions for the different schemes with identical surface wind speeds in addition to compute the fluxes with their own wind fields. Of course it will difficult to decide on the ‘best’ emission scheme by this as there are no global scale dust emission flux data, but a test of the performance could possibly be done be in terms of modelled ’emission events’ compared to meteorological dust storm data, IDDI, and TOMS AI > 0.7 (?)events (any other ideas?).
Regarding a telephone conference, sometime January would be fine. Having never set up one myself, I cannot offer any other suggestions on the best way to do this, sorry.
A happy holiday season to all of you, Best wishes, Ina
Dr. Ina Tegen Leibniz Institute for Tropospheric Research Permoserstr. 15 04318 Leipzig Germany
Tel.: +49 (0)341 235 2146 Fax: +49 (0)341 235 2139 Email: itegen@tropos.de