Difference between revisions of "ESIP 2022 January Meeting Materials for the session 'In-situ and remotely-sensed data integration for wildfire management'"
(Created page with "==Purpose of this page== This page provides a summary of the session [https://sched.co/qkoS ESIP 2022 January Meeting session 'In-situ and remotely-sensed data integration for...") |
m (→Overview) |
||
(7 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
==Pointers to essential documents== | ==Pointers to essential documents== | ||
+ | *'''[https://doi.org/10.6084/m9.figshare.18858629 Big picture synthesis diagram with slide excerpts from workshop presenters updated with participant input]''' | ||
*[https://sched.co/qkoS ESIP meeting webpage for this workshop session] | *[https://sched.co/qkoS ESIP meeting webpage for this workshop session] | ||
+ | *[https://docs.google.com/document/d/1lZxHcqcMWSh07CfJjc1p_SEkwXrG8ByWWsUaU-Y0zF0/edit?pli=1 Google notes document used to document the proceedings of the workshop session] | ||
*Presentations from this session are located under the respective speakers in the "Agenda" section below. | *Presentations from this session are located under the respective speakers in the "Agenda" section below. | ||
Line 18: | Line 20: | ||
*Presenters: | *Presenters: | ||
− | **Fire Chief | + | **[https://www.moore.org/docs/default-source/default-document-library/2019-firs-workshop-report8e2e0861a10f68a58452ff00002785c8.pdf?sfvrsn=d021600c_0 Genny Biggs | Gordon and Betty Moore Foundation] |
− | **Xiaolin | + | **[https://drive.google.com/file/d/1uYEiLLgBLyK6dJgaB-K0k79uF9rJt4dm/view?usp=sharing Chief Dave Winnacker | Fire Chief at Moraga-Orinda Fire District] |
− | + | **[https://drive.google.com/file/d/1ZHTq39am6F2F_UhMLbUTrWf0Nb5uBB_k/view?usp=sharing Scotty Strachan | Nevada EPSCoR | ESIP EnviroSensing Cluster] | |
− | * | + | **[https://drive.google.com/file/d/1GABbr1QfaFEetm4naEIfstkdlxGk00-5/view?usp=sharing Andrea Thomer | University of Michigan | ESIP Drones Cluster] |
+ | **[https://drive.google.com/file/d/1tRjTVlR3j_ruH6qSvXwgTwZTseQAlrgh/view?usp=sharing Xiaolin Hu | Georgia State University] | ||
+ | **[https://drive.google.com/file/d/111XwwnlnJL58H6Je-w8QiQN2l4v2d3v_/view?usp=sharing Ziheng Sun | George Mason University | ESIP Machine Learning Cluster] | ||
==Overview== | ==Overview== | ||
− | + | This session continues the synthesis of ideas contributed by individuals from various ESIP clusters (including Agriculture and Climate, Semantic Harmonization, EnviroSensing, Machine Learning, and Drones) applied to wildfire management. This session focuses on the challenge of ingesting heterogeneous data from in-situ and remotely-sensed systems into models and applications between the pre-fire and fire containment phases. Scenarios include (a) using heterogeneous data for better planning prescribed burns by using data before and after a burn for ingestion into fire behavior models, and (b) using heterogeneous data to recommend both strategic fuel break siting during pre-fire planning and optimal containment line location in the course of active wildfire fighting. | |
− | This synthesis session directly extends two of the key takeaways proposed by discussants during the 2021 ESIP summer meeting session “Identifying technology capabilities that meet wildfire science and practitioner requirements”: (a) “...improve fusion among near-term fire behavior model data, values-at-risk data, and sensor data that can be represented and visualized in a Common Operating Picture”, and (b) “...better estimate burn severity by fusing data from various sources (in-situ, remote, model)”. | + | This synthesis session directly extends two of the key takeaways proposed by discussants during the [https://tinyurl.com/2021julyESIPworkshop 2021 ESIP summer meeting session “Identifying technology capabilities that meet wildfire science and practitioner requirements”]: (a) “...improve fusion among near-term fire behavior model data, values-at-risk data, and sensor data that can be represented and visualized in a Common Operating Picture”, and (b) “...better estimate burn severity by fusing data from various sources (in-situ, remote, model)”.. |
==Agenda== | ==Agenda== | ||
− | + | High-level agenda for this session: | |
+ | |||
+ | # [https://doi.org/10.6084/m9.figshare.18858629 Preview and synthesis of session concepts (Brian Wee | Massive Connections)] | ||
+ | # [https://www.moore.org/docs/default-source/default-document-library/2019-firs-workshop-report8e2e0861a10f68a58452ff00002785c8.pdf?sfvrsn=d021600c_0 Stakeholder perspective: Keeping your eyes on the big picture (Genny Biggs | Gordon and Betty Moore Foundation)] | ||
+ | # [https://drive.google.com/file/d/1uYEiLLgBLyK6dJgaB-K0k79uF9rJt4dm/view?usp=sharing Stakeholder perspective: Challenges from the wildfire frontlines (Chief Dave Winnacker | Fire Chief at Moraga-Orinda Fire District)] | ||
+ | # [https://drive.google.com/file/d/1ZHTq39am6F2F_UhMLbUTrWf0Nb5uBB_k/view?usp=sharing Technical solution perspective: In-situ EnviroSensing: challenges and opportunities in the (wild)fire continuum (Scotty Strachan | Nevada EPSCoR | ESIP EnviroSensing Cluster)] | ||
+ | # [https://drive.google.com/file/d/1GABbr1QfaFEetm4naEIfstkdlxGk00-5/view?usp=sharing Technical solution perspective: sUAS data use/reuse/repurpose for science and management (Andrea Thomer | University of Michigan | ESIP Drones Cluster)] | ||
+ | # [https://drive.google.com/file/d/1tRjTVlR3j_ruH6qSvXwgTwZTseQAlrgh/view?usp=sharing Technical solution perspective: Wildland Fire Simulation and Data Assimilation using UAS data (Xiaolin Hu | Georgia State University)] | ||
+ | # [https://drive.google.com/file/d/111XwwnlnJL58H6Je-w8QiQN2l4v2d3v_/view?usp=sharing Technical solution perspective: AI/ML for Wildfire: Limits and Opportunities (Ziheng Sun | George Mason University | ESIP Machine Learning Cluster)] | ||
+ | # Breakout groups for (1) In-situ and remote data fusion, (2) UAS data ingest into models. | ||
+ | # Breakout groups present on (1) Barriers to implementation, (2) What is achievable in the short-term | ||
+ | # Synthesis and looking ahead | ||
==Three main takeaways== | ==Three main takeaways== | ||
− | + | # Connect early with stakeholders to co-design and co-develop solutions so as to include appropriate scale of application and intended audience/user, and to be useful and usable within stakeholder environments. | |
+ | # Need to extend /apply science-based observation architectures (sensors, communications, data management, compute, etc) to operational needs, by appropriately aggregating and packaging the data for use in operational environments. | ||
+ | # Co-designed and co-developed solutions must take into consideration operational constraints (e.g. logistical, legal, citizen expectations) especially in wildfire response (as opposed to pre-fire planning) contexts. |
Latest revision as of 10:48, January 21, 2022
Purpose of this page
This page provides a summary of the session ESIP 2022 January Meeting session 'In-situ and remotely-sensed data integration for wildfire management' held on 2022-01-19.
Pointers to essential documents
- Big picture synthesis diagram with slide excerpts from workshop presenters updated with participant input
- ESIP meeting webpage for this workshop session
- Google notes document used to document the proceedings of the workshop session
- Presentations from this session are located under the respective speakers in the "Agenda" section below.
People involved
- Session organizers:
- Presenters:
- Genny Biggs | Gordon and Betty Moore Foundation
- Chief Dave Winnacker | Fire Chief at Moraga-Orinda Fire District
- Scotty Strachan | Nevada EPSCoR | ESIP EnviroSensing Cluster
- Andrea Thomer | University of Michigan | ESIP Drones Cluster
- Xiaolin Hu | Georgia State University
- Ziheng Sun | George Mason University | ESIP Machine Learning Cluster
Overview
This session continues the synthesis of ideas contributed by individuals from various ESIP clusters (including Agriculture and Climate, Semantic Harmonization, EnviroSensing, Machine Learning, and Drones) applied to wildfire management. This session focuses on the challenge of ingesting heterogeneous data from in-situ and remotely-sensed systems into models and applications between the pre-fire and fire containment phases. Scenarios include (a) using heterogeneous data for better planning prescribed burns by using data before and after a burn for ingestion into fire behavior models, and (b) using heterogeneous data to recommend both strategic fuel break siting during pre-fire planning and optimal containment line location in the course of active wildfire fighting.
This synthesis session directly extends two of the key takeaways proposed by discussants during the 2021 ESIP summer meeting session “Identifying technology capabilities that meet wildfire science and practitioner requirements”: (a) “...improve fusion among near-term fire behavior model data, values-at-risk data, and sensor data that can be represented and visualized in a Common Operating Picture”, and (b) “...better estimate burn severity by fusing data from various sources (in-situ, remote, model)”..
Agenda
High-level agenda for this session:
- Preview and synthesis of session concepts (Brian Wee | Massive Connections)
- Stakeholder perspective: Keeping your eyes on the big picture (Genny Biggs | Gordon and Betty Moore Foundation)
- Stakeholder perspective: Challenges from the wildfire frontlines (Chief Dave Winnacker | Fire Chief at Moraga-Orinda Fire District)
- Technical solution perspective: In-situ EnviroSensing: challenges and opportunities in the (wild)fire continuum (Scotty Strachan | Nevada EPSCoR | ESIP EnviroSensing Cluster)
- Technical solution perspective: sUAS data use/reuse/repurpose for science and management (Andrea Thomer | University of Michigan | ESIP Drones Cluster)
- Technical solution perspective: Wildland Fire Simulation and Data Assimilation using UAS data (Xiaolin Hu | Georgia State University)
- Technical solution perspective: AI/ML for Wildfire: Limits and Opportunities (Ziheng Sun | George Mason University | ESIP Machine Learning Cluster)
- Breakout groups for (1) In-situ and remote data fusion, (2) UAS data ingest into models.
- Breakout groups present on (1) Barriers to implementation, (2) What is achievable in the short-term
- Synthesis and looking ahead
Three main takeaways
- Connect early with stakeholders to co-design and co-develop solutions so as to include appropriate scale of application and intended audience/user, and to be useful and usable within stakeholder environments.
- Need to extend /apply science-based observation architectures (sensors, communications, data management, compute, etc) to operational needs, by appropriately aggregating and packaging the data for use in operational environments.
- Co-designed and co-developed solutions must take into consideration operational constraints (e.g. logistical, legal, citizen expectations) especially in wildfire response (as opposed to pre-fire planning) contexts.