

For any questions about this presentation, or to provide feedback, please contact:

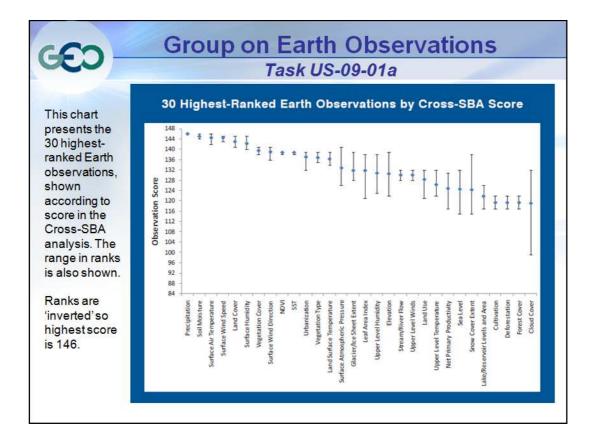
Adam Carpenter, CarpenterA@Battelle.org, 703-875-2982 Erica Zell, ZellE@Battelle.org, 703-236-1420

This presentation provides an overview of the Group on Earth Observations (GEO) Critical Earth Observation Priorities Project (US-09-01a) as a whole, with a focus on the precipitation subtask. Please feel free to distribute this presentation to colleagues who may be interested in providing feedback (questions are located on the last slide). We are especially interested in feedback from groups and representatives of groups that either are end-users of precipitation information or who represent end-users of precipitation information.

Gr Gr	oup on Earth	n Observations	
GEU	Task US	S-09-01a	
GEO Task US	-09-01a		
Objective:			
and the second	nduct a process f	or identifying critical	
Earth observation	n priorities comm	on to many GEO	
societal benefit a	areas, involving so	entific and technical	
experts, taking a	ccount of socio-e	conomic factors, and	
building on the re	esults of existing s	systems' requirements	
development pro	ocesses.		
GEO Societal Bene	fit Areas:		
Agriculture	Disasters	Health	
Biodiversity	Ecosystems	Water	
Climate	Energy	Weather	2

The report for GEO Task US-09-01a, Identification of Critical Earth Observation Priorities, was published in October 2010, with minor revisions in April 2011. The purpose of the task was to identify Earth observation priorities for the nine GEO societal benefit areas (SBAs), listed on the slide. This was accomplished by a team of analysts who reached out to other experts to form ad-hoc advisory groups. Under the advice and direction of the advisory groups, the analysts sought out hundreds of documents detailing Earth observation needs, priorities, and requirements from end-users. Each analyst wrote a report specific to their SBA. Once those reports had been written, they were reanalyzed and compiled into a cross-SBA report, detailing the overall Earth observation priorities across all the SBAs.

More information about GEO can be found at http://www.earthobservations.org


More information about GEO US-09-01a can be found at http://sbageotask.larc.nasa.gov/

The direct link to the US-09-01a report is http://sbageotask.larc.nasa.gov/Final_SBA_Report_US0901a_Apr2011.pd f

		GEO	Soc	ietal	Bene	fit Ar	'eas*	,	
Earth Observation Parameter	Agriculture	Climate	Disasters	Ecosystems	Energy	Health	Water	Weather	GEO Task US-09-01a
Precipitation									GEO Task 03-09-01a
Soil Moisture									Highest Ranked Observations (#1-15) and Associated SBAs
Surface Air Temperature									
Surface Wind Speed									All of the 15 Highest-Ranked
Land Cover									observations are common to
Surface Humidity									4 or more SBAs
Vegetation Cover									All of 30 Highest-Ranked
Surface Wind Direction									observations are common to 3 or
Normalized Difference Vegetation Index									more SBAs (16-30 are not shown
Sea Surface Temperature									here)
Urbanization									
Vegetation Type									The observation was included in the SBA's set of priorities
Land Surface Temperature									The observation was not included in the SBA's set of priorities
Surface Atmospheric Pressure									* Biodiversity SBA Team did not produce
Leaf Area Index									a set of Earth observations priorities.

Precipitation was the highest ranked parameter by every analysis method used in preparing the cross-SBA report. All of the SBAs required precipitation measurements (Biodiversity is currently not listed because the biodiversity report did not include a list of priorities. An updated biodiversity report is currently in development).

This graph indicates which of the top 15 parameters were indicated to be a priority by each SBA. The focus of this subtask is precipitation because it is both common to all the reporting SBAs and is the top overall priority. Soil Moisture and Surface Air Temperature are also common to all reporting SBAs, and could be subjects of future subtasks.

The Cross-SBA analysis used several different statistical techniques to determine the overall ranking of the top parameters. Precipitation was the highest ranked parameter for every method, and had one of the lowest levels of uncertainty as to its ranking. On this graph, the overall score the parameter received is shown, with a bar depicting the variability of that parameter based on the different analysis techniques.

15 Most Critical Observations* (unordered)				
Precipitation (liquid, solid and mixed phase).				
Soil Moisture: Surface/Sub-Surface				
Soil Temperature: Surface/Sub-Surface				
Evaporation-Lakes and Wetlands				
Evapotranspiration - From Land Surface.				
Runoff/Stream Flow.				
River Discharge (To Ocean Coastal Zones/Estuaries)				
Glaciers & Ice Sheets (Extent/Depth)				
Aquifer Volumetric, & Change				
Land Cover - Vegetation Cover/Type				
Elevation/Topography				
Water Quality – Large Water Bodies, Major Rivers, Estuaries				
Lakes/Reservoirs Levels (Including Other Surface Storages)				
Snow: Cover/Depth/Type, Snow Water Equivalent				
Ground Water Recharge/Discharge Rates				

This is an example of the summary of findings from one of the component reports, the Water SBA. This report focused on four sub-areas: surface waters, ground waters, forcings, and Water Quality & Water Use. In the analysis, 200 documents were utilized, and the 15 most critical observations are listed. In this instance, the 15 top critical observations are unordered (all are equally high priority).

	Task US-09-01a			
15 Most Critical:	15 Most Critical Observations			
is most critical.	1. Water Run-off			
- Dorgy	2. Wind Speed			
nergy	3. Land Cover			
	4. Normalized Difference Vegetation Index (NDVI)			
Analyst: Erica Zell	5. Net Primary Productivity (NPP)			
	6. Global Horizontal Irradiation (GHI)			
	7. Direct Normal Irradiation (DNI)			
Report Sub-Areas	8. Elevation/Topography			
	9. Air Temperature			
Solar Energy Wind Energy (land-based)	10. Surface Temperature			
Wind Energy (offshore)	11. Relative Humidity			
Hydropower	12. Cloud Cover (cloud index)			
Bioenergy Geothermal Energy	13. Temperature of Geothermal Fluid at Depth			
umber of Documents: 54	14. Surface Deformation			
	15. Groundwater Chemistry (e.g., presence of borates)			

This is another example of the findings from a summary report, this time the Energy SBA. This report had six sub-areas, based upon different types of renewable energy. 54 documents were analyzed, and the 15 most critical observations are in priority order.

GEO Grou		Earth	Observa 09-01a	tions	
Next Steps: US- Gap analysis of obs and future availabilit	ervatio			current	
Current & Future States of Critical	1000	al Earth on Priorities	Currently A Yes	Available No	
Earth Observation Priorities Results of Gap Analysis can be shown	in Future	Planned	Good situation	In waiting	
in such a diagram.	Available in Future	No Plan	Possible crisis	Major gap	7

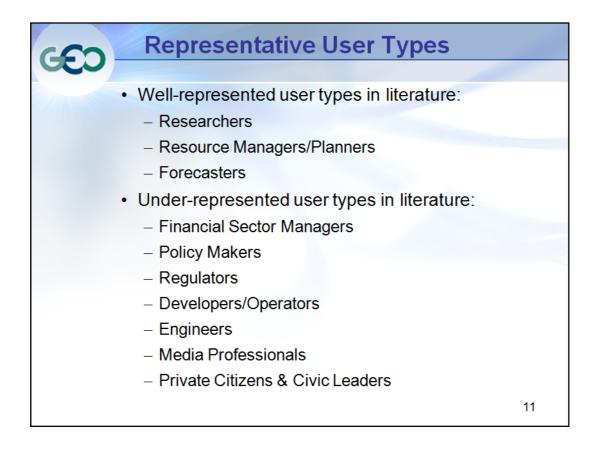
The next step in this process is to compare what is wanted with what is currently available and planned for future availability. First, more precise information about each Earth observation priority is needed to assess the specific requirements for that parameter, which is the focus of this subtask for precipitation.

Second, an assessment of whether observations for a priority are currently available and whether they are likely to be available in the future can be used to place observations within this chart.

We recognize this chart simplifies many realities, and are using it simply as a framework for our analysis.

To accomplish these goals, two activities are currently underway:

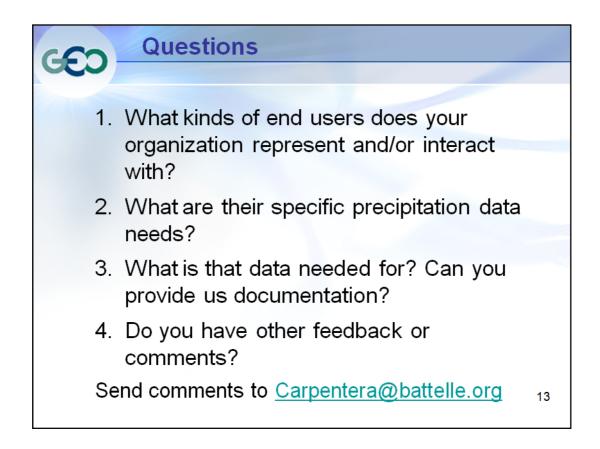
Activity 1 is focused on determining the availability of satellite measurements for the highest ranked observations, and is being conducted in coordination with CEOS. Activity 1 is being undertaken concurrently with this activity (activity 2).


Activity 2, the activity for which we are currently presenting (and for which we need your help!), is identifying the required parameter characteristics for precipitation. Currently, it is focused only on precipitation, although it's possible we may examine some other parameters in the future.

with Examples		
Researchers Technology Developers Climate Researchers Atmospheric Scientists	Media Professionals Journalists Broadcast Meteorologists	
Policy Makers Advisory Organizations Elected Officials Policy Analysts	Financial Sector Managers Planners and investors Risk Assessors Insurance Professionals	
Resource Managers/Planners Agriculture Planners/Managers Coastal Managers Emergency/Disaster Response Managers Forest Managers Mineral Resource Planner Water Resource Managers Disaster Warning System Operators	Forecasters Hydrologists Meteorologists	
Regulators Permitting Agencies Energy, Nuclear, and Hydropower Planning and Regulatory Commissions	Private Citizens & Civic Leaders Tourists School Principals	
Developers Operators Aviation Industry/ Pilots Health Care Providers Electric Grid Operators Utility Companies	Engineers Civil Engineers Chemical Engineers Development Bank Planners	

For Activity 2, we are looking to obtain input from a wide variety of end-users. This includes, but isn't limited to the groups listed above. The above list is based upon a sample taken from the US-09-01a SBA reports. It is important, for the purposes of our project, of our project that we include more than just the research community and have many end-users across all disciplines represented.

ource	Horizontal Resolution	Temporal Resolution	Location	Accuracy	Uses
GCOS 2006a	Not Stated in Document	Routinely- produced	Global	Validated	"weather and climate forecasts agricultural planning, forestry and water management"
Lauritson 2002	1km (Optimal) 50km (Threshold)	5 min (Optimal) 4 hour (Threshold)	Global	Not Stated in Document	Flash flood monitoring and response
Ceccato et al 2005		Not Stated in Document	Areas with risk or potential risk of malaria	Not Stated in Document	Predicting outbreaks of malaria in areas where rainfall or other weather parameters have changed


Here are a few examples of summarized information from documents we've analyzed. In some cases, a document will explicitly state end-user requirements (such as Lauritson 2002 above, which is clear about spatial and temporal resolution requirements). In other cases, a document will include only vague statements that add some value but are not highly specific (such as GCOS 2006a above).

Amongst the documents already analyzed, researchers, resource managers/planners, and forecasters are well-represented. However, many other types of end-users are under-represented, and in some cases not represented at all. We welcome all additional sources, but most specifically we are looking for information about the under-represented user types listed above.

	Researchers	Resource Managers/Planners	Forecasters
Horizontal Resolution	1-5 km	1 km	2-5 km
Location	global, regional	global, regional over land, crop areas	global
Temporal Resolution	6-12 hr	5 min - 2 hr daily, monthly, annual averages	30 min - 1 hr
Timeliness	15 min - 1 hr	5-30 min	5 min

Upon compiling information from the analyzed documents, we were able to determine the general needs of the well-represented user types, including horizontal (spatial) resolution, location, temporal resolution, and timeliness. Upon completion of the subtask, we hope to be able to compile much more thorough information for many more users.

In order to reach our goals, we need your help! Answering the above four questions will help us make sure that we have fully examined the available literature and successfully identified the end-user precipitation needs. Feel free to email us to ask any questions, and we greatly appreciate your help!

We would greatly prefer a single set of answers compiled by the group, rather than individual responses. If at all possible, please provide feedback by September 15, 2011.

Please send comments, questions, and feedback to Adam Carpenter at CarpenterA@battelle.org

Thank you!