Data Scientist Story for Earth Science Collaboratory

Chris Lynnes

What the _____ are "Data Scientists"?

- Experts in techniques that can be applied to managing or analyzing data, e.g.,
 - Semantic web
 - Data mining
 - Statistics
- Work two sides of the street
 - Using data
 - Providing data
- Ranks are likely to grow
 - University programs in data science
 - "Big Data" hype
 - Not much data bigger than Earth Sciences
 - Also big, complex problems

Key Personae Attributes

- Knowledge about the Earth Science domain can vary considerably from little to broad knowledge
- But highly skilled in a field outside Earth science: math | statistics | machine learning | Al | semantics | informatics etc.
 - May possess awesome programming skills
- Key Strengths include:
 - Adaptability
 - Communications
 - Understanding of methods
 - Technical breadth

Key Needs (User Side)

- Access to Earth science domain knowledge
- Data that are:
 - Clean = spurious, unreliable values removed (or clearly marked)
 - Tidy = well formatted and structured
- Benchmark datasets
 - canonical community datasets for which the "solution" is well known
 - e.g., Land cover classification, DeFries and Townshend (1994)
- Problem datasets
 - Datasets where the solution is not well known or are controversial

Jay the Data Scientist

- Jay works the User Side of the Street
- He is an expert in Video Image Analysis
 - Has developed a new technique for measuring ground level haze using traffic cameras
- Next up: develop a method of combining traffic camera image analysis with satellite AOD to estimate ground-level PM 2.5* in urban areas
- (Well, it *could* happen. In theory.)
- Primary goal of the project is to demonstrate the technique
 - Hopeful that aerosol domain scientists may be interested...

*PM 2.5: Fine particulate matter, less than 2.5 microns

Step 1: What's Out There?

- Reliable ground station PM 2.5?
 - Search for data with PM 2.5 and information (community sentiment?) on reliability
 - e.g. "AirThen", quality-controlled archive of AirNow
 - · Comments assess reliability, articles describe reliability
 - Perhaps a "Community Benchmark Data Set" designation?
- Clean satellite AOD
 - Artifacts in data clearly marked, with pictures and workflow examples and / or related articles

Step 2 – Process data (safely)

- Jay chooses from reprojection or colocation techniques for Satellite AOD relative to traffic locations and PM2.5 measures
 - Uses community comments on pro and cons of competing techniques
- Posts results with annotations / questions to StackExchange for ESC

- "What the _____ is *this* spike?"

Step 3: Develop and Test Method

- Add traffic data to ESC
- Add traffic cam analysis algorithm to ESC
 - Image analysis of traffic cams for visibility and traffic flow + colocated satellite AOD
- Construct compound workflow processing satellite data + traffic cam analysis
- Generate results of predicted PM 2.5 with measured (in AirThen)

Step 4: Seek Community Feedback

- Publish (make visible) traffic cam data + processed satellite data + algorithm + workflow + results
- Aerosol scientists check out satellite data results, pointing out artifacts, known issues etc.
- Jay revises, republishes, etc.

Step 5: Publish

- Jay publishes article
 - Acknowledgments section generated automatically:
 - users that answered questions, provided comments that Jay "liked"
 - colocation algorithm author
 - Data citations generated for community datasets used
- Links to algorithms, data, workflows, results, community comments