Climate Change, Energy and the Adaptation Challenge

Benjamin L. Preston Senior Research and Development Staff Environmental Sciences Division Oak Ridge National Laboratory

Earth Science Information Partners Meeting July 20-23, Knoxville, Tennessee

Outline

- What is adaptation?
- Dimensions of adaptation
 - What are we adapting to?
 - Who adapts?
 - How do we adapt?
 - What do we want to achieve?
- Opportunities and Barriers
- The Road Ahead. . .

Adaptation means different things to different audiences

"Adjustment in ecological, social, or economic systems in response to <u>actual or expected climatic stimuli</u> and their effects or impacts."

IPCC (2001)

"a process whereby institutional actors first <u>abandon</u> <u>their traditional assumptions</u> and behaviours and subsequently adopt a new set that is better-suited to the new circumstances."

Preston et al. (2009), based on Parkes (1971)

Adaptation processes have multiple dimensions

• The "Adaptation Cube" (courtesy Rob Kay)

4 Managed by UT-Battelle for the U.S. Department of Energy

Energy systems lend themselves well to illustrating the challenges of adaptation

Complexity

- Massive infrastructure and investment
- Extensive linkages across space and time
- Elaborate governance network and regulatory regimes

Integration

- Portfolio of energy technologies and transmission systems
- Diverse end uses
- Linkages between energy systems and environmental systems
- Integration between greenhouse gas mitigation and adaptation

Criticality

- Fundamental to other societal systems and services

Adaptation can be framed around four key questions

What are we adapting to?

Climate change

- Extreme weather events
- Reduced reliability of natural resources

2090-2099 return period for a current 1 in 20 year heat event

Energy Impact Supplies		Climate Impact Mechanisms		
Fossil Fuels (86%)	Coal (22%)	Cooling water quantity and quality (T), cooling efficiency (T,W, H), erosion in surface mining		
	Natural Gas (23%)	Cooling water quantity and quality (T), cooling efficiency (T,W, H), disruptions of off-shore extraction (E)		
	Petroleum (40%)	Cooling water quantity and quality, cooling efficiency (T,W, H), disruptions of off-shore extraction and transport (E)		
	Liquified Natural Gas (1%)	Disruptions of import operations (E)		
Nuclear (8%)		Cooling water quantity and quality (T), cooling efficiency (T,W,H)		
Renewables (6%)	Hydropower	Water availability and quality, temperature-related stresses, operational modification from extreme weather (floods/droughts), (T, E)		
	Biomass			
	• Wood and forest products	Possible short-term impacts from timber kills or long-term impacts from timber kills and changes in tree growth rates (T, P, H, E, carbon dioxide levels)		
	• Waste (municipal solid waste, landfill gas, etc.)	n/a		
	Agricultural resources (including derived biofuels)	Changes in food crop residue and dedicated energy crop growth rates (T, P, E, H, carbon dioxide levels)		
	Wind	Wind resource changes (intensity and duration), damage from extreme weather		
	Solar	Insolation changes (clouds), damage from extreme weather		
	Geothermal	Cooling efficiency for air-cooled geothermal (T)		
(Source: EIA, 2004)				

Climatic extremes frequently reveal the vulnerability of the U.S. energy system

Drought and Cooling	Hurricanes and Oil and	Severe Weather
Water for Power	Gas Infrastructure (EIA,	and Black Outs
Plants (NETL, 2009)	2005)	(CEIDS, 2001)
 Drought conditions in the Southeast and Midwest in 2006 -2007 forced shutdowns and/or reductions in generation TVA forced to purchase electricity above costs of production Costs passed on to 	 In 2005, Hurricanes Katrina and Rita damaged oil and gas infrastructure in the Gulf of Mexico (GOM) GOM oil and gas production was reduced by one-quarter to one-third for several months Fuel prices were pushed 	 Heatwaves, lightning strikes, downed trees, and ice storms are frequent contributing factors in U.S. power outages Outages cause \$104- 164 billion in economic losses to U.S. businesses

We need energy systems that are more robust

Energy systems impacts cascade through other sectors and society

What are we adapting to?

Climate change

- Extreme weather events
- Reduced reliability of natural resources?

Societal change

- Population growth, urbanization
- Increasing wealth, consumption

What are we adapting to?

Climate change

- Extreme weather events
- Reduced reliability of natural resources?

Societal change

- Population growth, urbanization
- Increasing wealth, consumption

Technological change

- Increasing energy efficiency
- Deployment of new technologies 400

Policy change

- Climate change in NEPA
- Cap-and-trade

Figure 59. U.S. electricity demand growth, 1950-2035 (percent, 3-year moving average)

Key vulnerability of energy systems relates to disparities in scale

- The scale of energy systems creates many vulnerabilities and high adaptation costs
- Investments in new technology are small relative to value of existing infrastructure
- Suitability of different technologies is not homogenous over space and time

for and consumption of energy

Net societal demand

To what extent will climate change enable or constrain progress toward a resilient, low-carbon energy future?

Figure 93. Carbon dioxide emissions by sector and Figure 39. Energy use per capita and per dollar of

Deployment of climate resilient & climate friendly technologies

Who adapts?

- Adaptation will be undertaken by different actors at a range of geopolitical scales
 - Reactive Responding to past vulnerabilities
 - Anticipatory Responding to future vulnerabilities

- Little attention has been given to how responsibilities will be distributed or coordinated
- Actions taken at one-scale enable or constrain actions at other scales

How Do We Adapt?

- Successful adaptation is dependent upon three core components:
 - 1) Viable adaptation options
 - Cost-effective solutions
 - Robust to uncertainty
 - Avoid additional externalities
 - 2) <u>Sufficient capital</u> for their implementation
 - Financial, physical, natural, social, human
 - 3) Entitlement of actors to such capital
 - Access to information on climate change and energy impacts
 - Harmonized institutional arrangements and governance networks
 - Establishment of appropriate financial incentives/disincentives

Adaptation is a process of enhancing these three areas

Photo: American Wind Energy Association

14 Managed by UT-Battelle for the U.S. Department of Energy

What do we want to achieve?

- What does it mean for a system to be well-adapted to climate change?
 - Adaptation priorities for the energy sector are poorly defined
 - Few criteria for success (but failure is easy to recognize)

Sector	Incremental Change	Transformational Change
Buildings	 Adjust thermostat 	 Install solar photovoltaic array
Transport	 Increase fuel efficiency standard 	Expand public transport systemsExpand biofuel production
Electricity Generation	• Fuel switching (e.g., coal to natural gas)	Carbon capture and storageSolar, wind, geothermal
Electricity Transmission	Smartgrids	 Distributed energy

Adaptation Opportunities and Barriers

Opportunities	Barriers
Proliferation of real-time monitoring systems are enhancing understanding of system performance, vulnerabilities, and optimal management strategies	Paucity of high-confidence predictions of climate change and natural resource availability at local scales
Diversification of energy technologies is enabling tailored deployment based upon end uses and resource availability	Limited quantitative understanding of energy system sensitivity including demand, production and distribution to climate variability and change
Advances in design (buildings, appliances, vehicles, urban form) will continue to reduce per capita energy use and energy intensity	Limited understanding of the portfolio of adaptation options and their costs and benefits
Turnover of existing capital stocks and technologies will provide windows of opportunity to improve efficiency and resilience	Limited understanding of the teleconnections among energy impacts and/or adaptation options
Climate change and technology policy will continue to drive investment in energy system R&D and deployment	Limited understanding of the potential synergies or trade-offs between mitigation and adaptation

The Road Ahead...

- Adaptation is taking on renewed importance in climate change science and policy
- Deliberate adaptation planning is emerging among a range of geopolitical scales, sectors and institutions
- The U.S. is moving toward a national adaptation strategy
- Such efforts will fuel demand for climate services, impact analysis, and climate risk management
- Ultimately, the goal is to see consideration for climate change impacts routinely embedded within decisionmaking

Thank You

Benjamin L. Preston

Senior Research and Development Staff Environmental Sciences Division Oak Ridge National Laboratory prestonbl@ornl.gov

