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APPLICATION OF DATA QUALITY OBJECTIVES

AND MEASUREMENT QUALITY OBJECTIVES

TO RESEARCH PROJECTS

Robert S. Wright
U.S. Environmental Protection Agency, National Risk Management Research

Laboratory, Air Pollution Prevention and Control Division,
Research Triangle Park, North Carolina, USA

This paper assists systematic planning for research projects. It presents

planning concepts in terms that have some utility for researchers. For

example, measurement quality objectives are more familiar to researchers than

data quality objectives because these quality criteria are more closely associated

with the measurement systems being used. Because of the diverse nature of

research, it is not possible to describe cookbook-style planning procedures to

be used in all cases. Instead, several general concepts and techniques are pre-

sented and researchers can choose those techniques that best fit their specific

projects. Examples are presented to illustrate the techniques.

INTRODUCTION

Systematic planning is used to develop programs and to link program

goals with cost, schedule, and quality criteria for the collection, eva-

luation, or use of data. Under the U.S. Environmental Protection

Agency’s (EPA’s) quality system, the data quality objective (DQO)

process was developed to assist systematic planning (U.S. EPA, 2000;

Batterman et al., 1999). While not mandatory, this process is EPA’s

recommended planning approach for many environmental data collec-

tion activities. It is based on the assumption that the ultimate goal for

these activities is to make some decision (e.g., a regulatory compliance

determination). This process uses a statistical approach to establish

DQOs, which are qualitative or quantitative statements that clarify

project objectives, that define the appropriate type of data, and that

specify tolerable error levels for the decisions. The process finally de-

velops a quality assurance (QA) project plan, including measurement

quality objectives (MQOs), to collect data with uncertainties within

these tolerable error levels.
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7 DISTINCTIONS BETWEEN DQOS AND MQOS

There is some confusion about the difference between DQOs and

MQOs, which also are called data quality indicator (DQI) goals. Al-

though these terms refer to goals for the quality of information gen-

erated by a project, some people incorrectly regard them as being

equivalent. One way to distinguish between them is that the former is

associated with data users and the latter is associated with data col-

lectors. Another way is that DQOs function at the level of project goals,

while MQOs function at the level of measurement system capabilities.

For example, EPA has established a National Ambient Air Quality

Standard for the maximum 8-hour mean concentration of ozone in the

atmosphere. A reasonable DQO for this program might be that there

can be no more than a 5 percent probability of making an incorrect

decision (i.e., a false positive) based on ozone measurements that in-

dicate an urban area has not attained the standard. In addition to the

geographical and temporal variability of ozone concentrations in urban

air, the decision makers must also consider the uncertainty of the ozone

measurements. Appropriate MQOs for the measurements might be a

bias of less than 10 percent of the mean concentration and a precision of

less than 10 percent of the mean.

DQOs establish the full set of specifications for the design of the data

collection effort to ensure that data are of sufficient quality to make some

decision. They typically incorporate requirements for total data

uncertainty. These requirements are used, in turn, to establish quality

criteria, stated as MQOs, for significant components of total variability.

MQOs should be developed as an integral part of the QA project plan

generated during the final step of the DQO process.

The DQO process is a formal balancing mechanism that uses

statistical techniques for systematic planning. A decision maker

balances the risk of making an incorrect decision against the cost of the

data that allow the decision to be made. The products of this process are

DQOs that are consistent with project goals.

A data collector balances the desired uncertainty of the data against

the costs of the sample and analytical procedures that are used to collect

the data in the project. Some scientifically defensible process must link the

desired uncertainty with the capabilities of the procedures. The first step

is the identification of DQIs, which are quantitative or qualitative

parameters (such as bias, precision, and representativeness) that

characterize the uncertainty of the project’s measurement systems. The

final step is the development of MQOs, which are specific goals for these

DQIs. The MQOs are generally quantitative goals and must be verifiable

by measurement during the project.

178 R. S. Wright
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7 A feedback loop should occur between the establishment of DQOs

and MQOs during planning and their reconciliation with the mea-

surement data that have been collected during implementation. Both

parts of the loop are necessary to establish the quality of data from the

project. Performing this reconciliation while data are being collected

can lead to improvements in the measurement systems during the

project. Additionally, performing this reconciliation for one project can

help with the development of DQOs and MQOs for a follow-on project.

APPLICATION OF DQOS TO RESEARCH PROJECTS

Under ideal circumstances, data users can be identified and their data

quality needs can be determined. They then can participate in sys-

tematic planning by developing DQOs that are based on project goals.

Data collectors design achievable MQOs for measurement systems and

estimate the funding that will be needed to attain desired DQOs. The

process balances the needs and capabilities of both groups. Several

iterations may occur before a mutually acceptable set of DQOs and

MQOs is established.

It is often a challenge to apply the DQO process to the development

of quality criteria for research projects. It may be difficult to identify

the data users or to establish a desirable level of uncertainty for the

data. In many cases, there is no decision to make, although there may

be some requirements for the uncertainty of measurements. For basic

research projects, the measurement system may not be developed

enough for its uncertainty to have been characterized, even for

individual components of the system. Other procedures may be needed

to develop the criteria. It may be necessary to develop DQOs and MQOs

that are based only on the performance characteristics of the mea-

surement systems. Nevertheless, researchers need to have quality

control (QC) procedures that allow them to verify that the measure-

ment systems are operating correctly and to estimate the uncertainty of

the environmental data that they collect.

ACCOUNTING FOR SAMPLE VARIABILITY

If data will be collected from the environment, the DQO process must

also develop a plan to select the number and location of the samples to

be collected to attain some desired level of uncertainty due to the

spatially or temporally heterogeneous nature of the sample population.

For the purposes of this discussion, it will be assumed that the mea-

surements to be made do not involve collecting samples from the

environment and that the variability associated with the samples does

Application of Data Quality Objectives 179
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7 not have to be considered in the systematic planning. In reality, both

sample variability and measurement uncertainty must be considered in

the systematic planning for a project and the development of its DQOs.

If sample variability is large relative to measurement uncertainty,

efforts to reduce the total uncertainty by decreasing measurement

uncertainty may not be cost-effective. It may be more fruitful in this

instance to collect a larger number of more uncertain, inexpensive

measurements than to collect a smaller number of less uncertain,

expensive measurements. Conversely, if measurement uncertainty is

large relative to sample variability, then efforts to decrease measure-

ment uncertainty may be appropriate.

There are four principles that must be considered when developing

sampling plans:

� Samples must be representative of the portion of the environment

being investigated;

� Procedures for sampling and analysis influence each other, and so

plans for sampling and analysis are codependent;

� QC samples must be representative of the samples being analyzed;

and

� QC samples are used to provide an assessment of the kinds and

amounts of bias and imprecision in data from analysis of the samples

(Keith et al., 1996).

The website for the American Chemical Society’s Division of

Environmental Chemistry newsletter (www.envirofacs.org) has down-

loadable Windows software that allows one to calculate the number

of samples that must be collected to attain three objectives: (1)

determining the rate at which an event occurs; (2) determining an

estimate of an average value within a tolerable error rate; and (3)

determining the sampling grid necessary to detect localized points of

contamination or hotspots.

DQOS AND MQOS NEED TO BE REALISTIC, MEASURABLE,
AND AUDITABLE

QA project plans should contain DQOs and MQOs that represent rea-

listic data quality needs and measurement system characteristics for

the project. Generic DQOs and MQOs whose attainment cannot be

verified during the project should not be included in a plan because

they are meaningless. The project staff ’s hopes or unsubstantiated

guesses regarding data quality are not adequate bases for DQOs and

MQOs. Values for MQOs that are taken from the technical literature

180 R. S. Wright
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should be accompanied by information about the conditions under

which the MQOs can be considered to be applicable.

Table 1 presents MQOs for a hypothetical project. These MQOs may

or may not be realistic. One cannot tell from the table alone. The QA

project plan needs to present mathematical formulas that define how

project staff will determine by measurement whether the MQOs have

been attained. The plan also needs to present specific QC check pro-

cedures that will be used to determine MQO attainment as well as the

specific acceptance criteria for these procedures. For example, it does

no good to establish an MQO for bias if there are no credible reference

standards available for checking the bias of the method. If the plan

describes such QC check procedures, acceptance criteria, and reference

standards, then project staff will be able to determine whether mea-

surement uncertainty is adequate for the intended use of the data.

Additionally, an internal or external auditor can verify independently

whether MQOs were attained by independent performance evaluations

or by review of the paper trail of QC check results obtained by project

staff.

QUALITATIVE DQOS

DQOs may be stated in quantitative or qualitative terms. Generally,

quantitative statements are preferable, but acceptable qualitative

DQOs are possible, such as the following:

The project will produce data that will qualify to receive the ‘A’ rating

with respect to the rating system described in Section 4.4.2 of the Pro-

cedures for Preparing Emission Factor Documents (EPA-454=R-95-015).

Although it is stated in qualitative terms, this DQO is measurable

using specific data acceptance criteria that are referenced in the cited

document. Because these criteria include whether EPA test methods

were used for the measurements, reasonable MQOs for the project

may include the QC check criteria specified in these methods. There

is a direct link between quantitative MQOs and the qualitative

TABLE 1 Measurement Quality Objectives for a Hypothetical Project

Measurement

parameter

Analysis

method MQO for bias MQO for precision

MQO for

completeness

Parameter A Method A �5% �10% �90%

Parameter B Method B �20% �20% �90%

Application of Data Quality Objectives 181
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7 DQO. At the end of this project, data collectors and data users

(e.g., stakeholders, regulators, and management) can determine

whether the data quality is acceptable. In contrast, consider the

following qualitative DQO, which is not acceptable:

For this project, the qualitative DQO is to provide data to assess

emissions related to the operations of the source. This QA project plan

is a product of a systematic planning process and it contains the in-

formation needed to carry out the field operations and measurements

in order to meet this DQO.

There is no way to tell whether the resulting data are suitable for

the intended use because acceptable criteria have not been defined and

a procedure for assessing data quality has not been developed. The best

thing that project staff can do after data have been collected is to

carefully characterize the uncertainty, but this process cannot be con-

sidered to be systematic planning.

INSTRUMENT PERFORMANCE SPECIFICATIONS AS MQOS

Lacking other information, project staff may wish to use instrument

performance specifications taken from sales literature or operating

manuals as MQOs. Such specifications must be viewed with some

skepticism if it cannot be documented that they have been determined

objectively and rigorously under conditions similar to the project.

A vendor may feel compelled to present an instrument’s performance in

the best possible light relative to that of other instruments offered by

competitors. Various uncertainty components may have been omitted

from the specification or the specification may be based on measure-

ments obtained under conditions not typical of routine service (e.g.,

daily calibrations of an instrument normally calibrated on a weekly

basis or calibration of a field instrument under tight temperature

controls). It is preferable that instrument performance be evaluated

using objective and written procedures that are widely accepted for

instruments of that type. The measurement of performance by an

independent, objective evaluator is generally regarded as credible

evidence.

If the instrumentation vendor can provide credible evidence about

how the performance specification was determined and about the

measurements that were used in the determination, the use of such

specifications as MQOs is reasonable. In these cases, the instrument’s

operating manual may yield QC check procedures and acceptance

criteria that can be used directly by project staff. If these procedures

182 R. S. Wright
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7 are followed during the project and if the criteria are attained, one may

conclude that the measurement uncertainty corresponds to the

specifications.

GUIDE TO EXPRESSION OF UNCERTAINTY IN
MEASUREMENTS

In recent years, the international metrology community has standar-

dized the methods for calculating uncertainty in the Guide to the
Expression of Uncertainty in Measurement, commonly referred to as

GUM. In the United States, standards bodies such as American

National Standards Institute (ANSI), National Conference of Standards

Laboratories (NCSL), and National Institute of Standards and Technol-

ogy (NIST) have adopted GUM as their official method for calculating

uncertainty for metrology in testing and calibration laboratories (Taylor

and Kuyatt, 1994; ANSI, 1997; NIST, 2004). The statistical techniques in

GUM provide a standard basis for determining uncertainty in research

projects. The statistical terminology that is used in GUM differs some-

what from customary statistical terminology.

ERROR ANALYSIS

For well-characterized measurement systems, project staff should be

able to develop a functional relationship between the MQOs for a

measurement system and the DQOs for the project. Error propagation

techniques allow the uncertainties of individual measurement system

components (expressed as standard deviations) to be combined into an

estimate of the overall measurement uncertainty (Evans et al., 1984;

Taylor, 1997; Coleman and Steele, 1999; Dieck, 2002; Kimothi, 2002).

This approach assumes that the major sources of measurement varia-

bility have been identified, that bias can be controlled, and that

relevant QC checks can be developed to characterize the variability. If a

relationship exists, then one can demonstrate that DQOs have been

attained if all QC check results fall within the corresponding MQOs.

If the functional relationship between the variables is of the form

Q¼ aXþ bY7 cZ where a, b, and c are constants and where X, Y, and Z

are the variables and if the standard uncertainties (i.e., standard

deviations) are SX, SY, and SZ, then the combined standard uncertainty

of Q equals

ucðQÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaSXÞ2 þ ðbSY Þ2 þ ðcSZÞ2

q

Application of Data Quality Objectives 183
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7 If the functional relationship between the variables is of the form

Q¼ aX * (bY=cZ), then the combined standard uncertainty of Q is

estimated by

UcðQÞ ¼ ð�qqÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSX=�xxÞ2 þ ðSY=�yyÞ2 þ ðSZ=�zzÞ2

q

where �qq, �xx, �yy, and �zz are mean values of the measured variables,

preferably based on a large number of observations. If the standard

deviations are represented in terms of percentages of the measured

values [i.e., as relative standard deviations¼ 100ðSX=�xxÞ], then the

combined standard uncertainty can be calculated as the square root of

the sum of the squared percentages.

It is often desirable to present combined uncertainties in terms of

statistical confidence limits, which requires one to multiply the com-

bined uncertainty by a coverage factor, k, to obtain the expanded

uncertainty (U).

U ¼ kucðQÞ

The coverage factor is equivalent to the normal z-value in customary

statistics. It relates the combined standard uncertainty to the prob-

ability that a single sample drawn from the parent population will fall

within a multiple of uC of the mean value. When the number of mea-

surements contributing to the calculation of SX , SY , and SZ is large and

when one seeks a 95 percent confidence limit for U, then k is set to

approximately 2. This value is normally used when reporting the

uncertainties of measurements. Statistical tables of the standard nor-

mal z-distribution should be consulted to obtain values of k for different

values of the confidence limit.

Consult the references for detailed information about measurement

uncertainty and error propagation calculations. The basic error pro-

pagation formulas have implicit assumptions such as the independence

of the measurements, their randomness, and their variances being

small. Significant deviations from these assumptions will lead to sig-

nificant errors in the uncertainty estimates that are made using these

formulas. Strictly speaking, the formulas apply to the statistics of the

population of all possible measurements, rather than to the statistics of

the smaller number of actual measurements. Any application of the

formulas to the latter group is an approximation. When in doubt about

the use of statistical calculations in specific applications, it’s always a

good idea to consult with a statistician.

184 R. S. Wright
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7 LIMITATIONS OF ERROR ANALYSIS

Uncertainty estimates and MQOs derived from propagation of error

calculations are useful as long as (1) one can determine the major

sources of measurement error and (2) one can quantify the magnitude

of the uncertainty associated with each source. In a research project,

the measurement system may be so new that its performance is not yet

characterized. In these circumstances, empirical approaches may be

needed to determine measurement uncertainty and to establish MQOs

for a project. For instance, collocated measurements can characterize

the precision of measurement systems. Performance evaluations can

characterize the bias of the systems. The results of such method eva-

luations can be used to establish defensible MQOs for future projects,

even in the absence of knowledge of error sources and uncertainty

magnitudes.

Error propagation calculations cannot be used to combine indi-

vidual QC check results to yield an uncertainty estimate. One can’t

substitute a single measured value for a standard deviation. Random

error will cause results from one QC check to be different from those of

another check. By analogy, one can’t pull a single red bead from a bag of

beads and then conclude that all beads in the bag are red. The best that

can be done is to use these QC check results to demonstrate that MQOs

have been attained and to conclude that the uncertainty is within the

acceptance criterion. The means and standard deviations for multiple

QC checks can be combined to yield an uncertainty estimate.

UNCERTAINTY BUDGETS

One can use error propagation calculations to develop an uncertainty

budget for the measurement system. Given a particular requirement

for overall uncertainty, an appropriate portion of this uncertainty can

be allocated to each component of the measurement system. Such an

approach allows project staff to design measurement systems with

MQOs that will allow attainment of DQOs or to assess whether it is

technically feasible to attain the proposed DQOs. It also allows project

staff to develop the most cost-effective method to reduce the overall

uncertainty. They can determine which measurement system compo-

nent has the largest effect on the overall uncertainty and then con-

centrate their efforts on improving the quality of the data from that

component. They can also use uncertainty budgets to evaluate

alternative measurement strategies and choose the most cost-effective

strategy. For example, it may be less expensive to attain a DQO by

making multiple measurements with a cheap, low precision method

Application of Data Quality Objectives 185
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7 than to do so making a single measurement with an expensive, high

precision method.

CONCLUSIONS

Although the application of DQOs and MQOs to research projects may

seem to be difficult at first, the techniques presented in this paper can

assist researchers in developing quality criteria that are meaningful to

them while satisfying the quality requirements that are applicable to

their projects. These criteria must be realistic for the project at hand,

measurable during the course of the project, and auditable by external

reviewers. Statisticians and QA specialists can assist researchers in

developing these criteria.
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7 EXAMPLE 1: COMPARISON OF TWO DIFFERENT METHODS
TO ESTIMATE THE UNCERTAINTY OF FINE PARTICULATE
CONCENTRATIONS IN AMBIENT AIR USING A
DICHOTOMOUS SAMPLER

This example is adapted from a report by Rhodes (1990), who compared

two different methods to determine the uncertainty of fine particulate

measurements. The first method used error propagation techniques

and the precision of measurement system components to obtain the

combined standard uncertainty. The second method used the results

from collocated measurements to estimate precision and flow sensor

performance evaluations to estimate bias.

EPA established MQOs for measurements that are used to de-

termine whether ambient air quality attain the National Ambient Air

Quality Standards (Rhodes, 1983). State and local air pollution control

agencies are required to conduct periodic assessments of their ambient

air quality monitors and to report precision and bias estimates for the

data that they report to EPA. To reduce the probability that decision

makers will make an incorrect decision about whether a specific area

has attained or not attained the standards, acceptance criteria were

established for the precision and bias of the data. Current EPA MQOs

for measurements of fine particulates in ambient air specify that the

agency-average precision be no more than a 10 percent coefficient of

variation and the agency-average bias be no more than�10 percent.

(Note that these MQOs pertain to samplers that had not yet been

developed at the time of Rhodes’ 1990 report.)

The dichotomous sampler collects fine and coarse particulate mat-

ter from ambient air, which is drawn into the sampler for 12 or 24 hours

and passes through an impactor that separates it into one air stream

containing fine particles and another air stream containing coarse

particles. The two flow rates are 15 L=min and 1.67 L=min, respec-

tively. Fine particles are collected on one filter and coarse particles are

collected on another filter. Each filter is weighed before and after

sampling to determine the mass of particles that have been deposited

on the filter. The equation for calculating the fine particulate

concentration is

½F � ¼ ðWe �WuÞ=Qt

where

[F]¼fine particulate concentration ðmg=m3Þ
We ¼weight of exposed filter ðmgÞ
Wu ¼weight of unexposed filter ðmgÞ

Application of Data Quality Objectives 187



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f G
eo

rg
ia

] A
t: 

18
:3

3 
3 

D
ec

em
be

r 2
00

7 

Q¼flow rate (m3=min)

t¼ sampling time (minutes)

Under the first method, error propagation techniques were used to

calculate the combined standard uncertainty of the fine particulate

concentration. The standard uncertainties for each measured variable

and the combined standard uncertainty are presented in Table 2.

The combined standard uncertainty of F was calculated using the

following equation:

ucðFÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð5Þ2 þ ð3Þ2 þ ð0:03Þ2

q
� 6%

In this example, the uncertainty associated with the fine particulate

mass is the largest contributor to the uncertainty of the fine particulate

concentration. If the sampling time were longer or if the concentration

were greater, the flow rate might become the largest contributor

because the increased mass collected on the filter would decrease the

relative magnitude of the weighing uncertainty.

Under the second method, collocated measurements and perfor-

mance evaluations were used to estimate the combined standard

uncertainty. The precision of the dichotomous sampler was obtained

from analysis of a large number of collocated measurements. The

standard deviation of difference of the two paired measurements yiel-

ded an estimate of the uncertainty associated with the random error

(i.e., precision) component of the measurement. There is no practical

way to measure the systematic error (i.e., bias) of the fine particulate

concentration. Because the flow measurement was considered to be the

main source of error, performance evaluations of the flow sensor were

used to estimate the bias component of the measurement. Table 3

TABLE 2 Uncertainty of Fine Particulate Concentration Based on Error Analysis

Measurement variable Symbol Value Uncertainty (ui)*

Weight of exposed filter We 99,412mg 7.1 mg (0.007%)

Weight of unexposed filter Wu 99,211 mg 5.7 mg (0.006%)

Fine particulate

mass on filter

We7Wu 201mg 9.1 mg (�5%)

Flow rate through filter Q 0.015 m3=min 0.00045 m3=min (3%)

Sampling time, min t 705 min 2.5 min (� 0.03%)

Fine particulate

concentration

[F] 19 mg=m3 1.7 mg=m3 (� 6%)

*ui is the standard deviation of the listed value. Normally it is multiplied by a factor of approxi-

mately 2 to obtain a 95 percent confidence interval for the value.
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shows that these two error components yield an estimate of the com-

bined standard uncertainty for [F].

In this calculation, the bias component was treated as an

uncertainty. Rhodes (1990) states that if bias is believed to be very

persistent and has been determined from a large number of values

and if it is to be used only for a limited data set from which bias is

estimated, then the bias would be added as a constant value to the

uncertainty associated with the precision. However, if the bias has been

estimated from a limited number of audits (therefore not exactly

known), if the bias itself may be considered as having variability in

time and if the limits are to be generally applied to the measurement

method, then the bias can be treated as an uncertainty. There is no

universal agreement as to which procedure is more appropriate.

The combined standard uncertainty estimate using the second

method (14%) is considerably larger than the corresponding value

obtained from the first method (5%). There appears to be unknown

sources of error in the dichotomous sampler measurements that were

not considered by the error propagation technique. Rhodes indicated

that some of these error sources could be:

� Variation in flow rates during the sampling period and their separate

effects on the particle separation by the dichotomous impactor;

� Drifts in the weighing measurement system;

� Losses in particulate during handling prior to final weighing;

� Losses of filter fibers during sampling, sample handling, and prior to

final weighing; and

� Variation in the effects of filter conditioning prior to weighing.

Rhodes concludes by stating that the most realistic combined

standard uncertainty estimates are those obtained from the collocated

measurements and the performance evaluations because the error

propagation techniques did not reveal some sources of variability.

TABLE 3 Uncertainty of Fine Particulate Concentration Based on Empirical Measurements

Measurement variable Symbol Value Uncertainty (ui)*

Collocated fine particulate

concentrations (precision)

[F]collocated 19 mg=m3 1.9 mg=m3 (10%)

Performance evaluation of

flow sensor (index of bias)

Qaudit 0.015 m3=min 0.0015 m3=min (10%)

Fine particulate concentration [F] 19 mg=m3 2.5 mg=m3 (� 14%)

*ui is the standard deviation of the measurement. Normally, it is multiplied by a factor of

approximately 2 to obtain a 95 percent confidence interval for the value.
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7 Rhodes recommends that bias and precision data for the various

measurement systems should be used more effectively in the determi-

nation of the uncertainty of ambient air monitoring data. More ana-

lyses should be performed to determine the relative contributions to

variation and to indicate more quantitatively the importance of errors

of particular variables. Further efforts should be made to reduce the

magnitude of the errors.

EXAMPLE 2: UNCERTAINTY ANALYSIS FOR LABORATORY
TESTING OF BAGHOUSE FILTRATION PRODUCTS

This example is adapted from a generic verification protocol for bag-

house filtration products that was prepared for EPA’s Environmental

Technology Verification Program (ETS, Inc. and RTI International,

2001). Forthcoming EPA regulations may require particulate emission

sources that use baghouse filters to control fine particulate emissions.

However, fine particulate control efficiencies have generally not been

measured for commercially-available baghouse filtration products

(BFPs). A laboratory testing program was established to measure BFPs

using a modified German method. Fine particulates passing through

the BFP are sampled in triplicate on filters mounted in a sampler. Fine

particulate mass that is collected on the filters is determined by

weighing the filters before and after sampling.

A group of data users established DQOs, shown in Table 4, for a

number of performance characteristics for the BFP. Because the testing

method had been already established in Germany, the measurement

system and its MQOs were already defined. The task then became

one of showing that the MQOs would allow for DQO attainment. This

example focuses on the mean outlet fine particulate concentration,

Copwhich has a DQO of 15 percent.

The equation for calculating each outlet particulate concentration is

as follows:

Cop ¼
X

PMfilter

� �.
Qfilter

� �
ðtÞ

where

PMfilter¼ the fine particulate mass collected on a filter

Qfilter¼ the sample flow rate through the filter

t¼ the sampling period

The uncertainty of the mean concentration can be expressed as:

ucðCopÞ ¼ ucðCopÞ
� ffiffiffi

3
p

� 15%
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The uncertainty of the individual concentrations is made up of

uncertainty components associated with the short-term and long-term

variability of the BFP testing method.

½ucðCopÞ�2 ¼ ½ucðlong�termÞ�2 þ ½ucðshort�termÞ�2 �ð26%Þ2

The short-term variability is associated with the variability on each test

date and the long-term variability is associated with the variability

between tests, which may be months apart. The two components

are assumed to be statistically independent. The �10 percent DQO

for the reference fabric weight gain will be used as an index of

the maximum acceptable long-term variability. By substituting terms

and rearranging the equation above, we obtain an acceptance criterion

for the uncertainty of each of the three outlet particulate concentrations:

ucðshort�termÞ�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

262 � 102
p �

� �24%

The standard uncertainty for each variable (based on the method’s

MQOs) and the combined standard uncertainty of the outlet particulate

concentration is presented in Table 5.

The estimated uncertainty of COP was calculated using the follow-

ing equation:

ucðCopÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Þ2 þ ð5Þ2 þ ð0:004Þ2

q
� 5%

This value is less that the acceptance criterion of � 24 percent that

is derived from the DQO. On this basis, the modified German method

should meet the data quality needs of the data users. In other words,

the DQO for the project will be attained if the MQOs for the method are

attained. As in the previous example, one error source (i.e., flow rate)

dominates the uncertainty calculations.

TABLE 5 Uncertainty of Outlet Particulate Concentration by Error Analysis

Measurement variable Symbol Value Uncertainty (ui)*

PM2.5 mass on each impactor

stage (filter weighed twice)

PMfilter �2 mg �0.07 mg (�4%)

Total PM2.5 mass on five filters

(each filter weighed twice)

P
PMfilter �10 mg �0.16 mg (�2%)

Flow rate thru all five filters Qfilter 20 L=min �1 L=min (5%)

Sampling time, min t 35 min �1 sec (0.04%)

Outlet fine particulate

concentration

COP 0.014 mg=L �0.001 mg=L (�5%)

*ui is the standard deviation of the listed value. Normally, it is multiplied by a factor of approxi-

mately 2 to obtain a 95 percent confidence interval for the value.
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