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Relationship of flagging frequency to confidence intervals in
the statistical regression approach for automated quality

control of Tmax and Tmin
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Abstract:
With the widespread use of electronic interfaces in data collection, many networks have increased, or will increase, the
sampling rate and add more sensors. The associated increase in data volume will naturally lead to an increased reliance
on automatic quality assurance (QA) procedures. The number of data entries flagged for further manual validation can be
affected by the choice of confidence intervals in statistically based QA procedures, which in turn affects the number of bad
entries classified as good measurements. At any given station, a number of confidence intervals for the Spatial Regression
Test (SRT) were specified and tested in this study, using historical data for both the daily minimum (Tmin) and maximum
(Tmax), to determine how the frequency of flagging is related to the choice of confidence interval. An assessment of the
general relationship of the number of data flagged to the specified confidence interval over a set of widely dispersed stations
in the High Plains was undertaken to determine whether a single confidence factor would suffice, at all stations, to identify
a moderate number of flags. This study suggests that using a confidence factor ‘f ’ larger than 2.5 to specify the confidence
interval will flag a reasonable number of measurements (<1%) for further manual validation and a single confidence factor
can be applied for a state. This paper initially compares two formulations of the SRT method. This comparison is followed
by an analysis of the percentage of observations flagged as a function of confidence interval. Copyright  2007 Royal
Meteorological Society
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INTRODUCTION

Two types of error may occur in the quality control (QC)
of weather data. A Type I error is the flagging of good
data and a Type II error is failure to flag bad data. The
frequency of occurrence of these two types of error is
a good indicator for evaluating the performance of QC
methods. The purpose of research on QC methods is to
produce optimal techniques to identify bad data while
minimizing the frequency of Type I and Type II errors.

One of the objectives of the development of automatic
quality assurance (QA) procedures for climate data is to
reduce the manual workload of human validators. QA
procedures have been applied by the National Climatic
Data Center (NCDC) (Guttman and Quayle, 1990) in a
mix of manual and automatic checks to assess the valid-
ity of weather data from the cooperative climatological
stations. The statistical literature is replete with general
guidance about identifying outliers in data (e.g. Barnett
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and Lewis, 1994), but literature concerning the appli-
cation of techniques specific to quality assessment of
climatological data is scant. General testing approaches
such as using threshold and step change criteria have
been designed for the single station review of data to
detect potential outliers (Wade, 1987; Reek et al., 1992;
Meek and Hatfield, 1994; Eischeid et al., 1995; Shafer
et al., 2000). Recently QC has been expanding from pro-
cedures based on the in-station checking to include pro-
cedures for interstation checking (Wade, 1987; Gandin,
1988; Eischeid et al., 1995; Hubbard et al., 2005). The
latter conducts the tests by comparing observations to
the reference estimates obtained from the spatial tech-
niques such as inverse weighting or statistical regression
between stations.

The spatial regression test (SRT, Hubbard et al., 2005;
Hubbard and You, 2005) assigns weights according to the
root mean square error (RMSE) associated with the linear
regression between the station of interest and the neigh-
boring stations. The SRT method proved to be robust
owing to its implicit accounting of the systematic differ-
ences associated with temperature lapse rate with eleva-
tion in complex terrain (Hubbard et al., 2005; Hubbard
and You, 2005). These estimates by the SRT method are
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critical to the processes of identifying suspect temperature
data, otherwise referred to as potential outliers, and the
procedure is used operationally to ensure quality data in
the Applied Climate Information System (ACIS; Hubbard
et al., 2004). The term potential outlier should not be con-
fused with the extreme values of record for it is instead
a value that is improbable based on the recent weather
at the site and in the surrounding area. The estimates are
also used to form a continuous dataset by filling in miss-
ing values. Research has demonstrated that the SRT is
superior to other tests in identifying seeded errors (Hub-
bard et al., 2005).

The SRT method has an input parameter to determine
the confidence level of the test, namely, the ‘f factor’,
which is similar to the cutoff in other QA methods. In
a separate study, the investigators used the SRT to iden-
tify the potential outliers during unique weather events
(You and Hubbard, 2006). In the case of hurricanes, cold
front passage, floods, and droughts, the number of QA
failures were largely due to the different times of observa-
tion coupled with the ambiguity associated with position
relative to tight gradients of temperature or precipitation
(Eischeid et al., 1995; Belcher and DeGaetano, 2005; Wu
et al., 2005; You and Hubbard, 2006). The original SRT
method was found to flag a considerable number of Tmax

and Tmin measurements when a cold front passes or pre-
cipitation measurements when a hurricane event occurs.
You and Hubbard (2006) introduced modifications to the
original SRT method to create an enhanced SRT relying
on the measurements at neighboring stations to recognize
these excessive flagging situations and, in special circum-
stances, to reset the ‘bad data’ flags back to ‘good data’
flags. The ratio of flags reset to the number of flags iden-
tified by the original SRT method for the unique events
is referred to as the ‘reset fraction.’

The original version of the SRT method (original SRT)
takes the square of intermediate estimates used in the
weighting process, which does not preserve the sign for
the final estimate when one or more intermediate esti-
mates are negative. The additional effort to determine the
sign introduces further demands on computer resources
when otherwise the algorithm is quite efficient. This study
presents a modified or new SRT method, called SRT2,
that eliminates the need to determine the sign of the esti-
mates. To determine the effectiveness of the modified
SRT2 method, the differences between the accuracy of
the new method and the original SRT method are evalu-
ated for all stations in the contiguous states of the USA
for both the Tmax and Tmin for the year 2002.

Other factors, besides f , can affect the precision of
the estimates. Hubbard and You (2005) explored the
sensitivity of the SRT method to such factors as the radius
of inclusion, the regression time-window, the regression
time-offset and the number of stations used to make the
estimates. The performance of the SRT method stabilized
when ten or more stations were applied in the estimates
and therefore we recommend 10 stations be used in this
QC procedure. Questions still remain, such as whether a
single value of the confidence factor (f ) can be employed

to flag the same fraction of data on a region-wide basis.
This study explores how the general relationship between
a specified confidence interval and the fraction of total
records flagged depends on the value of f and whether
or not the effect of the f value on flagging frequency
varies geographically.

MATERIALS AND METHODS

Data

The data from stations within the NOAA Cooperative
Observer Weather Data Network (National Weather Ser-
vice, 2000), a regional automated weather data network
(Hubbard, 2001), and other networks such as the Hourly
Surface Airways Network, and the Historical Climatol-
ogy Network were retrieved through the Applied Climate
Information System (ACIS, Hubbard et al., 2004), a dis-
tributed data management system. This study includes
estimation of the maximum air temperature (Tmax) and
minimum air temperature (Tmin) for the time period
1971–2000.

The sensitivity analysis of the SRT ‘f ’ factor to
the fraction of data flagged and the reset fraction by
the modified SRT method were carried out over the
states Colorado, Wyoming, North Dakota, South Dakota,
Nebraska, Kansas, and Iowa, for the 30-year period
1971–2000. The inclusion of a long time period in the
analysis reduces the potential for the relationship to be
dominated by a particular pattern from a specific year.

The comparisons between the original SRT method and
the new SRT method (SRT2) were carried out for all
continental stations of the USA in the year 2002 for both
Tmax and Tmin. The results obtained by both methods are
compared by examining widely used statistical indices
such as R2, RMSE, and Nash and Sutcliffe coefficient of
efficiency (NSCE, Nash and Sutcliffe, 1970).

Currently NCDC and other regional climate centers in
the United States of America archive the Tmax and Tmin in
degrees Fahrenheit. To be consistent with the widespread
use of this data in Fahrenheit and consistent with the
database, we use degrees Fahrenheit in this paper.

The station density is limited by the availability of sta-
tions in the existing network(s). Many stations have a dis-
tance of 20 km or less to the nearest stations. In less pop-
ulated areas like mountains, deserts, or wetlands, some
stations have a distance of separation of 50 km or greater.

Methods

Three SRT methods were employed in various stages
of this study: the original SRT (Hubbard et al., 2005),
the enhanced SRT (You and Hubbard, 2006), and a
new method described below (SRT2). You and Hub-
bard (2006) introduced a technique to reset ‘false’ flags,
thereby enhancing the ability of the SRT method to reset
the flags of the ‘good’ data during cold front passage.
The technique (enhanced SRT) introduces a new param-
eter ‘f ′’ which essentially affects the percentage of reset
flags out of the total flags. In this study, a new version
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of the SRT2 directly weights the estimates obtained from
surrounding stations using the inverse RMSE(s) between
the measured time series of the station and the reference
stations:

x ′ =
N∑

i=1

xis
−2
i /

N∑

i=1

si
−2. (1)

Where x ′ is the estimate for station of interest, N is the
number of neighboring stations used in the estimation, i is
the index of reference station, and xi is the regression esti-
mate. When temperatures in an area hover around zero,
this approach (SRT2) inherently preserves the correct
sign on the final estimate in contrast to the original SRT
method (Hubbard et al., 2005) wherein the sign required
a separate assessment. In the SRT2 method, the deter-
mining factors are the root mean square error between
the station of interest and the neighboring stations and
the sign of the observations at neighboring stations.

RESULTS

Estimates obtained using the original SRT method and
the new SRT2 method at all stations for the year 2002
were evaluated for their precision across continental USA
for both Tmax and Tmin. The year 2002 was the latest
year with complete data when we started the research
and it is assumed that the weather over the USA for
this period presents an adequate test environment for the
comparisons shown. The R2, NSCE, and RMSE were
calculated separately between the actual observations and
the estimates obtained for both the original SRT and
SRT2 methods. The difference of R2, NSCE, and RMSE
between the original SRT and the new SRT2 method
was calculated for all stations and the distribution of
these differences are plotted for all continental stations
in the USA. More details on these indices are given
in Hubbard and You (2005). In this comparison, the
difference between the two methods is negligible when
the difference of R2 and NSCE is smaller than 0.01
and the difference of RMSE is less than 0.1 F. Nearly
all stations have a negligible difference between the
indices as calculated using the original and new SRT2
method (Figure 1). Thus the methods are interchangeable
in estimating Tmax and Tmin. A sensitivity analysis of
the original SRT to f was conducted and because SRT
and SRT2 were found to be interchangeable, a separate
analysis for SRT2 is not presented here. The results of
the study could be tested using more complex statistical
methods, e.g. T -test and Variance test; however, these
tests are not necessary since the differences of RMSE
are smaller than 0.1 F for nearly all stations (i.e. less
than typical measurement errors of perhaps 0.5 F).

Climatologists and data validators are concerned with
the effort required to validate the weather data. Because
the number of ‘bad’ values in the Tmax and Tmin measure-
ments is unknown a priori, a totally manual operation
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Figure 1. The differences on the x-axis are between the NSCE
(top), R2 (middle), and RMSE (bottom) obtained from the SRT
and SRT2 methods (e.g. R2(SRT)- R2(SRT2)). Both the frequency
distributions (p) of the differences and the proportion of stations

(P) having differences smaller than the given value are shown.

requires that all data be assessed. However, with auto-
mated QC it may be possible to single out a subset of
data that requires manual checking and thus reduce the
workload while achieving the same result. It would be
desirable to reduce the values that must be manually
checked to say 1% of the incoming data stream and this
value was taken as a guide for selection of the f value in
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Figure 2. Percent of (a) original data flagged (SRT) as a function of f and (b) original flags remaining after employing the enhanced SRT as a
function of f ′.
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Figure 3. Box plot of the fraction of data flagged by original SRT at individual stations for different f values for Tmax and Tmin. The median
fraction is indicated by the black center line, and the upper and lower edges of the box represent the interquartile range (IQR). The extreme

values (within 1.5 times the IQR from the upper or lower quartile) are the whiskers extending from the IQR.
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the SRT method. For the High Plains stations, the number
of data flagged for the SRT method as a function of f

was determined using the data period from 1971 to 2000.
The average fraction of data flagged over all stations for
each value of the confidence factor for both Tmax and
Tmin were determined (see Figure 2(a)). Figure 3 presents
the box plot of the proportion of flagged data out of the
total measurements based on all stations. The fraction of
data flagged decreases considerably when f is greater
than 2.5. The mean of the fraction of data flagged is less
than 1% when f is greater than 3.0. A few stations were
found to exceed the whiskers in the box plot (not plotted).
These stations require further examination to determine
why they do not fit within the whiskers. Some possi-
bilities are: (1) those below the bottom whisker are the
stations of highest quality or are associated with excep-
tionally high spatial correlation structure, (2) those above
the top whisker may have underlying problems with sta-
tion equipment or observing practices, or (3) some phys-
ical factor is at work. Until a determination can be made
it may be necessary to use a station specific f value for
these stations.

After the reset procedure (You and Hubbard, 2006)
was employed with given f ′ values for both Tmax and
Tmin, there was a reduction in flagged data values as
shown in Figure 2(b). In this analysis of the effect of
f ′ on the resetting of flags, the initial flagging was
accomplished with f = 3.0 so that no more than 1% of
the data would be initially identified as potential outliers.
Several stations were found to fall beyond the whiskers
(not plotted) in the f ′ box plots (Figure 4). However,
the fractions of data flagged were small compared to
1%. Two possible reasons may cause the stations to

fall outside the whiskers: (1) the flags are not reset by
the simple rules at some locations; (2) the low station
density around some stations leads to a breakdown in
the correlation structure and thus not enough information
pertaining to temperature changes from the surrounding
stations. For example, some outliers may be associated
with identified flags located in relative isolation from the
influence zone of the cold fronts shown in Figure 10 of
You and Hubbard (2006).

Usually the manual checking rate for the automatic QA
procedures is not expected to exceed some percentage,
e.g. 1% of the measurements. Here, the confidence
factor, f , was calculated for each station for 1% of
the data flagged for both Tmax and Tmin. The box plot
of the f value was created for each state (Figure 5).
The mean values of the f value for 1% of the data
flagged are slightly lower than 3.0 for Tmax and are
slightly higher than 2.5 for Tmin. We found the daytime
air temperature has higher variation than the nighttime
temperature. The differences of f values for Tmax and
Tmin may be caused because long wave radiation is not the
only factor driving temperature during the daytime. Solar
radiation and albedo are also factors during daytime. In
addition, mixing and advection are more prevalent than at
nighttime. During nighttime, long wave radiation balance
may lead to a slightly higher correlation between stations
than during daytime. In some instances, to flag 1% of
the data at some stations requires f values beyond the
whiskers in some states like Colorado and Kansas. The
variance of f for each state is small with a value around
0.1, which is also the case for Colorado if the largest
outlier in both Tmax and Tmin are excluded. Based on this
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Figure 4. Box plot of the fraction of remaining flagged values at individual stations after employing the enhanced SRT and different f ′ values
during the period 1971 to 2000 when f equal to 3 for both Tmax and Tmin.
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analysis, for the ACIS database an f value of 3.0 will be
used for both Tmax and Tmin at all High Plains states. This
will result in roughly 1% of the records being flagged for
Tmax and around half percent for Tmin.

The QA tests of Tmax and Tmin with original SRT were
also conducted using an f value of 3.0 (see Figure 6).
Most stations have flagged fractions between 0.5 to 1.5%
of the total records for Tmax and flagged fractions less
than 0.5% for Tmin. The flagged fraction for Tmin is
generally lower than that of Tmax. In the plot, we cannot
identify strong patterns of the f value by regions. The
areas with sparsely distributed stations have a relatively
higher fraction of data flagged than the areas with densely
distributed stations, although occasionally a relatively
higher fraction may exist for the densely distributed
stations. In general, we suggest that a single value of
f for a state is acceptable for the QA of Tmax and Tmin.

DISCUSSION AND CONCLUSIONS

A new version of the SRT method was developed to
eliminate the need for special procedures to determine
the sign of the estimates, which was a shortcoming
of the original SRT method. The results demonstrate
that the two approaches are interchangeable for the 48
conterminous states. The differences obtained by the
two methods are negligible and thus utilization of the
modified method, which is simple, is recommended.

Sensitivity analysis was conducted for the f value of
the SRT method and for the f ′ value associated with
the technique to reset flags, e.g. in the event of a cold
front passage where excessive ‘false flagging’ is initially
prevalent. A value of 2.5 or larger for the f value is more
suitable than using smaller threshold values, considering
the relatively small number of potential outliers, which
need further manual examination. Different f values can
be applied to suit different utilizations of the climate
data by setting corresponding confidence levels for the
SRT method, e.g. 90% for one application and 95% for
another. The estimates obtained using the SRT method
or other methods, e.g. inverse distance weighted method,
can replace the identified outliers or missing data to
complete the dataset in specific model applications.

This study suggests that in the High Plains, a uniform
confidence factor of, e.g. 3.0, for the SRT QA procedure
can give a reasonable number of flagged data for further
manual validation. Similar work can be implemented
in other states and regions to determine any regional
differences.

The SRT method uses linear regression and can be
implemented using different time intervals over which
the regressions are formed. This approach is relatively
independent of future temperature trends because long-
term memory of weather data is not incorporated in the
estimates. One more concern may arise with the fraction
of data flagged when more data sources are available. If
additional networks are used in the QC process, factors
like instrument type and sampling strategy may affect

the correlation between stations and could lead to more
flags. This may not be a serious problem because only
the stations with the highest correlations are used in
SRT or SRT2. It appears more likely to the authors
that the effect of increased density of stations may lead
to higher correlation between stations and in turn a
lower fraction of data flagged. Of course, to realize the
higher correlation the station data must be brought in
individually and not as gridded data. For example, the
performance of SRT2 may be greatly improved and thus
flag fewer valid data when more stations are installed
in mountainous regions. Therefore, more data entries are
expected to be validated when additional networks are
used for QC in the future.
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