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Collecting natural data at regular, fine scales is an onerous and often costly procedure.
However, there is a basic need for fine scale data when applying inductive methods such as
neural networks or genetic algorithms for the development of ecological models. This paper
will address the issues involved in interpolating data for use in machine learning methods
by considering how to determine if a downscaling of the data is valid. The approach is based
on a multi-scale estimate of errors. The resulting function has similar properties to a time
series variogram; however, the comparison at different scales is based on the variance
introduced by rescaling from the original sequence. This approach has a number of
properties, including the ability to detect frequencies in the data below the current sampling
rate, an estimate of the probable average error introduced when a sampled variable is
downscaled and a method for visualising the sequences of a time series that are most
susceptible to error due to sampling. The described approach is ideal for supporting the
ongoing sampling of ecological data and as a tool for assessing the impact of using
interpolated data for building inductive models of ecological response.
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1. Introduction

Sampling ecological time series data inevitably leads to
questions regarding whether the appropriate sampling rate
has been used to detect the fundamental processes of the
system being measured. This question has implications in
terms of the accuracy of the measured information, and the
likely error that is associated with the sampling scheme being
applied. Although methods such as the Fourier transform and
wavelets can detect the fundamental frequencies in a time
series, they are not easily applied to address the question of
scale and sampling rate.

This paper introduces a simple approach that allows a
quantitative and visual representation of the change in
information content of a time series as the scale of the series
is changed. The resulting measure may be used to detect the
fundamental scales at which processes are operating in the
data and, under some circumstances, is sensitive to scales
smaller than the currently measured scale of the time series.
ago.ac.nz.
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This method may easily be incorporated into a sampling
regime to determine whether the appropriate scale for
sampling is being used and can give an estimate on the error
introduced by downscaling through interpolation. Since
machine learning techniques often require large amounts of
data to learn a suitable model, this method can be used to
estimate the validity of an interpolation procedure when
downscaling is applied, and hence whether the estimates of
model error are likely to be valid.

This paper is structured as follows: Section 2 gives
background on related matters such as missing data and
signal analysis with Section 3 describing the basic method of
this paper. Following this introduction, a variety of experi-
ments with different data characteristics are described:
Section 4.1 demonstrates the approach for a random se-
quence, Section 4.2 a periodic sequence and Section 4.3 a
chaotic time series. By altering the behaviour of these
sequences information regarding properties of the time series
and likely error are described. The consequences of these
.
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Fig. 1 –Multiple resampling and error calculation for scale S1.
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conclusions are explored in Section 5 where a variety of errors
from real data are described. Finally, Section 6 demonstrates
the use of themethod as a tool for assessing whether data has
been sampled at an appropriate scale, and therefore that
interpolation between data points is valid.
2. Background

The issue of downscaling a time series dataset (say from
weekly to daily samples) can be considered as an example of
the prediction of missing data. This field has been extensively
studied in the statistical literature, and a variety of methods
have been developed. The reader is referred to the review by
Scafer and Graham (2002) for an introduction tomethods such
as single imputation, maximum likelihood and multiple
imputation. The work described here does not consider this
complex problem, but addresses the simpler notion as to
whether some estimate of error from downscaling can be
determined, in particular for a univariate time series which
has been regularly sampled. Since in principle it is not possible
to know the true error produced by a particular downscaling
procedure for a univariate time series, the approach described
here is just one estimate of error, based on the structure of the
time series at the original sampling scale.

The Nyquist–Shannon sampling theory, a fundamental
theory from communication theory, states that to be able to
accurately reconstruct an analog signal from a discrete
sampling the sampling rate is required to be twice the highest
frequency in the signal (Shannon, 1949). However, in the
circumstance where reconstruction is not required, it is
Fig. 2 –λ(ϕ(S,T))±λσ(ϕ(S,T)) for a r
sometimes possible to detect the presence of higher frequency
signals, which in our case can be used as information to assess
whether an error will be introduced by downscaling.

Sophisticated methods for extracting frequency informa-
tion from a signal have been developed in the past, including
the Fourier transform and wavelet analysis (Combes et al.,
1989; Resnikoff and Wells, 1998). These methods are complex
and generally require some user interaction to select para-
meters for the analysis. Although these methods allow an
accurate assessment of frequency and time-frequency infor-
mation, they do not directly allow an assessment of the error
associated with downscaling. The method described in this
paper is a simplistic approach to frequency detection that
does allow this downscaling error to be estimated.
3. Methodology

The following multi-scale approach is based on the concept
introducedbyMandelbrot to address thequestion of the length
of a coastline (Mandelbrot, 1967); however, we do not consider
the fractal dimension of the time series. Rather, the time series
is repeatedly resampled at all scales and then, for each scale,
interpolated to produce an error measurement against the
original data. The error measurement is constructed against
the original sequence as the sampling scale Si is increased
from 0 (the original data) to N/2, where N is the number of
points in the sequence. Since for any scale Si there are i+1
possible combinations of measurements, these are used to
give the final error and standard deviation against the original
sequence. For every sampled scale, the sampled points are
interpolated back to the scale of the original data. The resulting
function defined by this error measurement will be defined as
λ(ϕ(S,T)), where S is the scale, T is the original sequence of n
sampling steps and ϕ(S,T) is the interpolated sequence, based
on the sampling rate S. The standard deviation of this error is
defined as λσ(ϕ(S,T)). This method is also similar to the
estimate of a time series variogram (Chatfield, 1989); however,
the novelty of the approach is the interpolation of the
resampled sequence back to the original scale and the
subsequent measure of error versus the original data.

Linear interpolation, based on the two nearest measured
neighbours, will be used for all interpolation experiments.
This has been selected as it represents a weak, local
interpolation method that is likely to give a good indication
of the error due to interpolation from a smaller number of
andom uniform distribution.



Fig. 3 –Original sin curve with five periods and λ(ϕ(S,T))±λσ(ϕ(S,T)).
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samples. Othermethods for interpolation are likely to perform
at least as well as linear interpolation, and hence this gives
some expected worse case.

Root mean square error (RMSE) is used for all comparisons
between the original and scaled, reinterpolated sequences.
Although there are many possible ways to measure sequence
similarity (Bollabas et al., 1997; Bridge, 1998) RMSEwas selected
as it biases towards larger errors, and hence will detect small
changes in the compared sequences. Additionally, RMSE was
measured against only those points that were interpolated,
rather than the entire sequence. Hence, for a sequence where
N=12, for S1 there are (12−2)/2=5 predicted points used in
the calculation of RMSE. Note also that the first and last points
of the original sequence are always kept as samples, and
therefore do not contribute to the error estimate. Fig. 1 shows
the two possible resamplings of a time series that can occur for
the first scale step S1. The error created by this scale change is
determined by a linear interpolation between the sampling
positions to produce a new sequencewith the original number
of sample points. The RMSE is then determined based on the
distance from each original sampling point and the interpo-
lated points derived from the resampling at each sampling
position. The standard deviation λσ(ϕ(S,T)) is calculated from
the variance in RMSE for each sampling position.
4. Properties of the multi-scale approach

This section will demonstrate the approach on random and
periodic sequences to illustrate how the method behaves
under a variety of simple sequence patterns.
Fig. 4 –λσ(ϕ(S,T)) for five-period sin curv
4.1. Random sequences

To illustrate the properties of the approach a random
sequence of 1000 values, with uniform distribution between
0 and 1, was generated as a univariate time series. The
resulting λ(ϕ(S,T)) for the random sequence is shown in Fig.
2. Since there is no information in the sequence (the
sequence is random), there is a constant rate of error once
Si≈10. At this point, there is no further loss of information in
the sequence, showing that a random sequence has no
fundamental frequencies and rapidly converges at all scales.
The subsequent interpretation of real sequences will show
that, once Si increases beyond the scale at which the
processes generating the sequence occur, the error will
level out. Note that, over the first 10 samples, dλ/dS≈0.035.
This rate of change is proportional to the loss of information
as the scale is increased, and hence this value shows an
expected maximum loss for normalised data as scale
increases. Fig. 2, focussing on S1–S10, shows the rapid
approach to measuring no information in the sequence.
This highlights the detection of a sequence with no pattern.
Hence, λ(ϕ(S,T)) can be used as a measure of the randomness
in a sequence.

4.2. Periodic sequences

This example is based on a sin curve that goes through
five complete periods. This will demonstrate how the
method can be used to detect the fundamental frequencies
in a sequence. Fig. 3 shows the method detecting the
regular frequencies that occur at a variety of scales based
e for 200 and 20 points per period.



Fig. 5 –The chaotic laser data sequence.
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on the sin curve shown with 5 periods. This curve has
been sampled for 1000 points, corresponding to 200 points
per period. The main indication that a critical scale length
is being approached is that λσ(ϕ(S,T)) begins to increase, as
highlighted in Fig. 4. Note that the increase in λσ occurs
around the scale at which each period of the data occurs.
The influence on sampling rate is also shown in Fig. 4,
where the original sin curve has been sampled at a rate of
20 points per period. Note that, although some detail has
been lost (as would be expected), the major frequencies in
the data are still detected at the same scales. Note that,
over the first 100 scale steps, dλ/dS≈0.002, which is
significantly lower than the random sequence.

4.3. Chaotic sequences

The laser dataset for NH3-FIR lasers (Hubner et al., 1994)
was chosen as an example chaotic sequence. The sequence
is shown in Fig. 5. The resulting λ(ϕ(S,T)) and λσ(ϕ(S,T)) are
shown in Fig. 6. λσ(ϕ(S,T)) indicates a major frequencies
around 100, 300 and 420, with many low frequency scale
processes also operating. Note that dλ/dS→0 rapidly
showing characteristics of a random sequence with em-
bedded frequency information. This indicates that dλ/dS
appears to be acting as a measure of the information loss
as Si increases.
Fig. 6 –λ(ϕ(S,T)) and λσ(ϕ(S,T))
4.4. Properties of λ(ϕ(S,T))

The following properties exist for λ(ϕ(S,T)):

• ∀λ(ϕ(S,T)), dT/dn=c⇒λ(ϕ(S,T))=0. All straight lines have no
scale information;

• ∀λ(ϕS,T)), dλ/dS=0⇒no scale information;
• dλ/dS∝rate of loss of scale information;
• dλ/dS→∞ implies no pattern as scale increases;
• dλ/dS→0 implies no loss of information as scale increases;
• As n→N/2, dλ/dS→0;
• dλσ(ϕ(S,T))/dS<ε implies that increasing scale does not

change the amount of variation in the error. Hence, if dλ/
dS= c, then there is a gradual lose of accuracy with
increasing scale; however, no significant processes are
detected for these scales.
5. Real data sequences

This section will demonstrate the multi-scale approach to the
analysis of two time series. Initially the approach will be used
to show how the various periods within the data can be
detected, and finally how the approach can infer the influence
of periods within the data that are at a finer scale than
originally sampled.

5.1. Lake Waihola data

The datasets used for this example were collected by Dr. Marc
Schallenburg as part of a study on the characteristics of Lake
Waihola, a partly sea influenced lake 30 km south of Dunedin,
New Zealand. The data was collected at 5-min intervals from
4th June 1999 at 13:07 till the 8th June 1999 at 11:42, for a total
number of 1136 samples. Data collected included temperature,
dissolved oxygen, conductivity and water depth. The temper-
ature and conductivity datasets are shown in Fig. 7. Note that
the x-axis has been labelled with a sample number, since no
assumption is made about the rate at which the samples are
taken (however, there is an assumption that the samples
occur regularly).

Visually, the temperature data from Fig. 7 shows a weak
periodic signal, with a downward trend for the first half of the
sequence, followed by amore level trend for the second half of
the sample, whereas the conductivity data exhibits at least
for the chaotic laser data.



Fig. 7 –Temperature and conductivity data from Lake Waihola.
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two clear periods—one at a rate of around 150 steps and a
second periodic signal that occurs at a rate of approximately
75 time steps.

The resulting multi-scale analyses of these time series are
shown in Figs. 8 and 9. It is clear that there is a large amount of
information contained in the sequences, and that the
behaviour of conductivity and temperature vary over many
different scales. For example, there is a strong pulse with
conductivity around the sampling scale of ≈75, corresponding
to a period of 6 h. This is the pulse related to the connectivity
of LakeWaihola to the seamouth,making the lake partly tidal.
This pulse is also apparent in the temperature data, although a
more significant period occurs at ≈150, corresponding to a
period of 12 h—the diurnal cycle. Over the first 150 sample
sizes, the normalised dλ/dS≈0.002 for temperature, whereas
for conductivity this is ≈0.004. This implies that the conduc-
Fig. 8 –λ(ϕ(S,T)) for Waihola temp

Fig. 9 –λσ(ϕ(S,T)) for temperatu
tivity sequence contains more information at lower scales
than temperature.

Finally, a closer look at the standard deviation for
conductivity, as shown in Fig. 10, shows that there are a
number of smaller periods for this dataset, and that there is a
large amount of information contained in this data. This
demonstrates that the multi-scale analysis of error can be
used to determine fundamental periods of the data, and to
show the information content of the data at all scales. Note
that five scale peaks (A–E) have been identified in Fig. 10.
These peaks will be considered further in Section 5.2.

5.2. The effect of coarse sampling

This section will demonstrate the results of applying the
multi-scale approach to a coarse sampling of the previous
erature and conductivity data.

re and conductivity data.



Fig. 10 –λσ(ϕ(S,T)) for conductivity for S1–S100. Fig. 12 –λ(ϕ(S,T)) for the conductivity data at 65 and 100
sampling rates.
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conductivity dataset. The results will show that the smaller
scale variations in the data can be detected even though the
dataset has not been sampled at this scale.

The original Waihola conductivity dataset was resampled
at intervals of 65 and 100 steps, with a linear interpolation
between neighbouring points used to reproduce the resulting
full 5-min sequences. These sequences, along with the
original conductivity data, are shown in Fig. 11, which shows
that the majority of information has been lost due to the
resampling and interpolation. However, when the multi-scale
analysis is applied to each of these resampled series, some
interesting details become apparent. It would be expected that
the multi-scale analysis would find a peak of standard error
about the scale at which the resampling occurred, but other,
lower scale, information shows up with this analysis. The λ(ϕ
(S,T))) plots for the original, 65 and 100 resamplings are shown
in Fig. 12. The resulting standard deviation plots λσ(ϕ(S,T)) for
each resampling are shown in Fig. 13.

Fig. 13 shows the first 100 sampling scales for both
resamplings, which should be compared with the original
plot from Fig. 10. Themost important features of Fig. 13 are the
identification of the peaks A…E and the largest peak at the
sampling rate of 65. Peaks A, B, D and E have been identified,
although shifted down or up in scale slightly, whereas peak C
appears as a cluster of scale changes. The fact that the peaks
A…D were identified, although the sampling rate was at a
greater scale, shows some promise in the method identifying
subscale detail in the data. Note that the position of the labels
on the figures is in the same horizontal position as the original
sequence (see Fig. 10), although they are shifted down to meet
Fig. 11 –The Waihola conductivity data re
the curve. Fig. 13 also shows some detection of the sampling
scale changes for the 100 resampling, even though all of the
peaks are at a lower scale than the sampled data. Note that
peaks A and B cannot be entirely resolved, and that peaks D
and E have shifted. Once again, however, this type of pattern
would indicate that it is likely that there is further scale
information at lower sampling rates and that this sampling
rate is not appropriate for the variation in the data.
6. Estimating the error from downscaling time
series

The previous section has shown that information can be
detected at lower scales than the sampling rate, and therefore
the question arises as to an estimate of the error associated
with this downscaling. Since the scalingmethod assumes that
a linear fit is done for downscaled points, the determination of
λ(ϕ(S,T)) for a lower scale will be an estimate of the error
associated with this downscaling. A lower bound on the error
associated with the downscaling from scale i is therefore λ̂(ϕ
(Si,T))± λ̂σ(ϕ(Si,T)). For example, if the original data for conduc-
tivity was the 65 resampling, the error associated with
downscaling to the original scale is 0.18±0.08. The actual
RMSE between the original and 65 resampling sequence is
0.39. Hence, this approach can be used by taking the current
sampled dataset and producing a downscaling using a linear
interpolation to produce a larger number of sample points.
The resulting value of λ, back at the true sampling rate, gives
sampled at 65 and 100 sampling rates.



Fig. 13 –λσ(ϕ(S,T)) for the 65 and 100 step resampling.
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this estimate of error. In addition, peaks in λσ below the true
sampling rate imply that the data contains information at
lower scales, and therefore increasing the rate of sampling
should be considered.

6.1. Use of λ(ϕ(S,T)) with resampled data—Lake
Kasumigaura

Lake Kasumigaura is situated in the southeastern part of
Japan. It is a large, shallow water body where no thermal
stratification occurs. Water temperatures vary widely, ranging
from 4 °C in winter to over 30 °C in summer. The lake has high
nutrient loadings and therefore phytoplankton abundance is
high for the majority of the year. Given the reliance on light
and temperature for growth, there are clear seasonal patterns
in the data. The data was collected at a weekly sampling rate
and has been downscaled to a daily dataset for use with a
variety of machine learning algorithms (Recknagel et al., 1998,
Fig. 14 –Lake Kasumigaura

Fig. 15 –λ(ϕ(S,T)) and
2000). The multi-scale analysis for a commonmodel predictor
variable, chlorophyll-a, is shown in Fig. 14. Since the down-
scaling was from weekly to daily, there were 6 new points
created between every sampled point. Hence, the lower bound
error for the downscaling of 310 the chlorophyll-a data is given
by λ̂(ϕ(6,T))± λ̂σ(ϕ(6,T))=1.52±0.03. Note that this is an approx-
imate lower bound on the error. One interesting note is that λσ
shows a peak around S8, implying that the data may not have
been regularly sampled each week.

A description of each variable collected for this dataset, and
the corresponding downscaling errors, are shown in Table 1.
One variable that shows a great deal of error is light. The plots
of λ(ϕ(S,T)) and λσ(ϕ(S,T)) for light are shown in Fig. 15. Note the
similarity in these patterns to the chaotic plots of Section 4.3.
This would suggest that this data should not be used as input
to a model, since it does not carry information at small scales
that behave with a similar relative error to the other variables.
Note that the 6-month and 12-month scales are identified
chlorophyll-a λ(ϕ(S,T)).

λσ(ϕ(S,T)) for light.



Table 1 – Lake Kasumigaura water quality variables and
downscaling error

Variable Ave.±S.D. λ̂(ϕ(6,T))± λ̂σ(ϕ(6,T)) Units

Ortho
phosphate

14.14±25.71 1.38±0.3 mg/l

Nitrate 520.56±503.4 8.85±0.22 mg/l
Secchi depth 85.43±44.57 0.94±0.1 cm
Dissolved

oxygen
11.2±2.14.0 14±0.02 mg/l

pH 8.74±0.59 0.027±0.003 –
Water

temperature
16.36±7.79 0.12±0.009 °C

Light 1280±670 640±6 mJ/cm2
Rotifera 229±293 20.2±4.7 Ind/l
Cladocera 170±222 30.85±7.3 Ind/l
Copepoda 156±84 6.65±0.5 Ind/l
Microcystis 38563±95,216 2649±257 Ind/l
Oscillatoria 20160±53,483 1329±229 Ind/l
Anabaena 6008±16,083 538±26 Ind/l
Chlorophyll-a 74.43±42.51 1.52±0.03 μg/l

314 E C O L O G I C A L I N F O R M A T I C S 1 ( 2 0 0 6 ) 3 0 7 – 3 1 4
from λσ in Fig. 15; however, the displayed patterns suggest
that the sampling of this variable has not been consistent
(same time each day), or that the variable under consideration
has a chaotic characteristic.
7. Conclusions

The approach described here allows a multi-scale assessment
of uniformly sampled time series data. By producing a plot of
λ(ϕ(S,T)) and λσ(ϕ(S,T)), the characteristics of a dataset can be
determined and can be used to assess whether the sampling
rate is appropriate for the variation in the data. The approach
is simple to implement, and allows a straightforward assess-
ment of scale properties. Additionally, λ(ϕ(S,T)) may be used to
estimate a lower bound on the error from downscaling a
dataset and, in conjunction with λσ(ϕ(S,T)), can be used to
assess the appropriateness of any variable as input to amodel.
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