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ABSTRACT

Quality assurance (QA) procedures have been automated to reduce the time and labor necessary to
discover outliers in weather data. Measurements from neighboring stations are used in this study in a spatial
regression test to provide preliminary estimates of the measured data points. The new method does not
assign the largest weight to the nearest estimate but, instead, assigns the weights according to the standard
error of estimate. In this paper, the spatial test was employed to study patterns in flagged data in the
following extreme events: the 1993 Midwest floods, the 2002 drought, Hurricane Andrew (1992), and a
series of cold fronts during October 1990. The location of flagged records and the influence zones for such
events relative to QA were compared. The behavior of the spatial test in these events provides important
information on the probability of making a type I error in the assignment of the quality control flag. Simple
pattern recognition tools that identify zones wherein frequent flagging occurs are illustrated. These tools
serve as a means of resetting QA flags to minimize the number of type I errors as demonstrated for the

extreme events included here.

1. Introduction

Quality assurance (QA) procedures have been ap-
plied (Guttman and Quayle 1990) to (semi)automati-
cally check the validity of weather data from National
Oceanic and Atmospheric Administration (NOAA)
Climatological Observer stations archived at the Na-
tional Climate Data Center (NCDC). While NCDC'’s
processes of validation became semiautomated, there
continued to be a major role for human data validators
whose performance was assessed objectively (Guttman
et al. 1988).

General testing approaches such as the threshold
method and the step change test were designed for the
single-station review of data to detect potential outliers
(Wade 1987; Meek and Hatfield 1994; Eischeid et al.
1995). Quality assurance procedures based on physical
processes have less history than the traditional statisti-
cal procedures. Examples include the testing of hourly
solar radiation against the clear-sky envelope (Allen
1996; Geiger et al. 2002) and the use of soil heat diffu-
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sion theory to determine soil temperature validity (Hu
et al. 2002).

Recently, the use of multiple stations in QA proce-
dures has proven useful; for example, the spatial tests
compare a station’s data against the data from neigh-
boring stations (Wade 1987; Gandin 1988; Eischeid et
al. 1995; Eischeid et al. 2000; Hubbard 2001; Feng et al.
2004). The spatial tests involve the use of neighboring
stations to make an estimate of the measurement at the
station of interest. This estimate can be formed by
weighting according to the inverse of the distance to the
location (Guttman et al. 1988; Wade 1987), or through
other statistical approaches [e.g., multiple regression,
Eischeid et al. (1995) and Eischeid et al. (2000); bivari-
ate linear regression test, Hubbard et al. (2005)].

The spatial regression test (SRT) used herein (Hub-
bard et al. 2005) does not assign the largest weight to
the nearest neighbor but, instead, assigns the weights
according to the standard error of estimate between the
station of interest and each neighboring station. Hub-
bard et al. (2005) used seeded errors to test the perfor-
mance of the threshold method, the step change
method, the persistence test, and the spatial regression
test. It was found that the spatial regression test out-
performed the other three methods, which missed
many of the errors identified by the spatial regression
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test while identifying only a handful beyond those iden-
tified by the spatial regression test.

In a separate study, a sensitivity analysis was per-
formed on various user-selected parameters for imple-
mentation of the spatial regression test (Hubbard and
You 2005). The sensitivity analysis included the re-
sponse to the radius of inclusion, the regression time
window, the regression time offset, and the number of
stations used to make the estimates. The performance
of the SRT method was found to be stable when 10 or
more stations were applied in the estimates.

The earlier study demonstrated the excellent perfor-
mance of the spatial regression test in identifying the
seeded errors. Experiments are still needed to answer
such questions as how will the spatial regression test
perform in extreme but real events, especially for data
collected during an extreme wet year or an extreme dry
year, in which precipitation at some stations may expe-
rience record or near-record daily values, monthly val-
ues, or both? In this study we investigate the perfor-
mance of the spatial regression test for such extreme
events as the 2002 U.S. drought (the extreme dry/hot
condition), the 1993 Midwest floods (the extremely wet
condition), Hurricane Andrew (1992), and a series of
cold-air outbreaks in October 1990. These events allow
us to characterize the behavior of the spatial regression
test in extreme events and to explore causes and pat-
terns of the QA failures (QA failure is defined here as
a higher frequency of flagging at a station than is con-
sistent with the frequency of flags at other stations in
the region; this is a QA failure in the sense that manual
intervention is required to actually determine if the
data are good or bad).

2. Methods and data

In this study, we used the data from both the Coop-
erative Observer Weather Network and the Automated
Weather Data Network (AWDN), and other weather
data networks such as the hourly surface airways net-
work and the Historical Climatology Network. We con-
ducted only one QA iteration regardless of the number
of potentially incorrect data entries identified. Cur-
rently the NCDC and other regional climate centers
archive the T,,,, and T,,;, in degrees Fahrenheit. To be
consistent with the widespread use of this data in Fahr-
enheit and consistent with the database, we use degrees
Fahrenheit in this paper.

a. Quality assurance rules

Quality assurance software consists of procedures or
rules against which data are tested. Each procedure will
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either accept the data as being true or reject the data
and label it as a potential outlier. This is hypothesis
(Ho) testing of the data and the statistical decision to
accept the data or to note it as a potential outlier can
have the outcomes listed in Table 1.

Take the simple case of testing a variable against
limits. If we take as our hypothesis that the data for a
measured variable are valid only if they lie within +3¢
of the mean (w), then assuming a normal distribution
we expect to accept Ho 99.73% of the time with no
error. The values that lie beyond w * 30 will be re-
jected and we will make a type I error when we en-
counter valid values beyond these limits. In this case,
we are rejecting Ho when the value is actually valid and
we expect to make a type I error 0.27% of the time.
This is true for data that have no errant values. If an
“errant” value is encountered, then the hypothesis will
properly be rejected, only if the errant value falls out-
side the range u * 30. It would otherwise be accepted,
when it is actually false (the value is not valid) and
result in a type II error. In this simple example, reduc-
ing the limits against which the data values are tested
will produce more type I errors and fewer type II errors
while increasing the limits leads to fewer type I errors
and more type II errors. For quality assurance software,
tuning is necessary to achieve a balance wherein one
reduces the type II errors (mark less errant data as
having passed the test) while not increasing type I er-
rors to the point where valid extremes are brought into
question. Because type I errors cannot be avoided, it is
essential for data managers to always keep the original
measured values regardless of the quality testing results
and further examine those values that have been
flagged.

b. Spatial regression test

The spatial regression test (Hubbard et al. 2005) is a
quality control approach that checks whether the vari-
able falls inside the confidence interval formed from
the measurements at surrounding stations during a time
period of length n (60 days in this study). All stations
(M) within a certain distance of the station of interest
are selected and a linear regression is performed for
each station paired with the station of interest and cen-
tered on the datum of interest. For each surrounding

TABLE 1. Hypothesis rules.

True situation

Statistical decision Ho true Ho false
Accept Ho No error Type II error
Reject Ho Type I error No error
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station, a regression-based estimate (x; = a; + byy;) is
formed. The weighted estimate (x") is obtained by uti-
lizing the standard error of estimate (s) also known as
rmse in the weighting process:

N 05 N —0.5
x ==+ [Etxfsi_z] [Eslﬂ] . 1)
=1 =1

Here, N is the number of stations to be used in the
estimate (generally restricted to an R? greater than 0.5
within a given radius of inclusion; in this study we use
an inclusion of 1°). Note that N is selected by the user
and N = M. Care must be taken to preserve the correct
sign on x’ and x;. The negative sign is used inside X *
x7s; % when x; is negative. When = + x7s; 2 is negative,
the negative sign is used for the estimated value and
outside = *+ x7s; % to maintain the validity of the equa-
tion. The weighted standard error of estimate (s') is
calculated as

N
—=N1>52 )

Now the confidence intervals can be based on s’ and
we test whether or not the station value (x) falls within
the confidence intervals defined by f:

X —fi'=x=x"+f5". 3)

If the value of x in (3) causes the relation in Eq. (3)
to be true, then the corresponding data pass the spatial
regression test. This relationship indicates that increas-
ing f decreases the number of potential type I errors.
Unlike distance weighting techniques, this approach
does not assume that the nearest station will get the
largest weighting.

c. Extreme events

The tests conducted in this study were carried out
over a wide spatial range during extreme or major
events like flooding, droughts, tropical storms, and cold
fronts. The data from stations were retrieved through
the Applied Climate Information System (ACIS), a dis-
tributed data management system (Hubbard et al.
2004). The data sources include the measurements from
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the NOAA Cooperative Observer Weather Network,
the Automated Weather Data Network [AWDN: the
Automated Surface Observing System (ASOS), the
Automated Weather Observation System (AWOS)],
and other networks such as the hourly surface airways
network and the Historical Climatology Network. This
study includes the extreme events selected for quality
assurance of variables like the maximum air tempera-
ture, the minimum air temperature, and the precipita-
tion. The selected events and the related variables are
shown in Table 2.

The Missouri River basin and the upper Mississippi
River basin experienced record heavy rain and flooding
in the summer of 1993. This event was included in the
analyses and precipitation was the variable examined in
the quality control (QC) analysis. In 2002, 48% of the
United States was in a drought at the end of August.
This event was included as the drought event and maxi-
mum temperature is the variable that we discuss in the
QC analysis. Hurricane Andrew (1992) devastated
Dade County, Florida, with an estimated $25 billion in
damage after its first landfall at Biscayne Bay on 24
August 1992. It made a second landfall in south-central
Louisiana on August 26. We examine how many of the
large precipitation amounts associated with the passage
of the hurricane were flagged as outliers. More detailed
information of these events can be found in the NCDC
database of extreme events (NCDC 2005).

A series of cold front events moved across the con-
tinental United States in October of 1990 and the pas-
sages of the cold front events were well documented on
the daily weather maps. The air temperature and pre-
cipitation are affected by the passage of these cold
fronts, s0 T\ Twmin, and precipitation were all exam-
ined in the QC analysis. The goal is to understand how
the spatial regression test will perform in the transition
associated with these weather patterns.

3. Results and discussion

In each of the following tests the number of flags and
their spatial and temporal disposition were tracked. A
discussion of the patterns created by flags is provided.

TABLE 2. Selected data and events.

Variables
Locations Events T nax T in Precipitation
Midwest (Missouri watershed and upper Mississippi) Extreme wet events (1993) Yes
Western United States Extreme dry event (2002) Yes
Coastal southeastern United States Hurricane Andrew (1992) Yes
Continental United States Oct cold fronts (1990) Yes Yes Yes
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a. Relationship between interval of measurement
and QA failures

Analyses were conducted to prepare artificial maxi-
mum and minimum temperature values (not the mea-
surements, but the values identified as the maximum
and minimum from the hourly time series) for different
times of observation from available hourly time series
of measurements. The observation time for coop
weather stations varies from site to site. Here we define
the A.M. station, p.M. station, and nighttime station ac-
cording to the time of observation as listed in Table 3.
The cooperative network generally uses the p.M. mea-
surements with a significant number of A.M. measure-
ments, and the Automated Weather Data Network
uses a midnight-to-midnight observation period.

The daily precipitation accumulates the precipitation
for the past 24 h ending at the time of observation. The
precipitation during the time interval may not match
the precipitation from nearby neighboring stations due
to event slicing; that is, precipitation may occur both
before and after a station’s time of observation. In
Table 3 we specify that the precipitation observations,
regardless of time of observations, provide good mea-
surements because the mass is conserved for different
times of observation.

The measurements of the maximum and the mini-
mum temperature are the result of making discrete in-
tervals on a continuous variable. The maximum or
minimum temperature takes the maximum value or the
minimum value of the temperature during the specific
time interval. Thus, the maximum temperature or the
minimum temperature is not necessarily the maximum
or minimum value of a diurnal cycle. Figure 1 shows an
example of these differences obtained from three time
intervals. The hourly measurements of air temperature
were retrieved from 0100 local time (LT) 11 March to
1700 LT 13 March 2002 at Mitchell, Nebraska. The
times of observation are marked: “A” shows the mini-
mum air temperature obtained for 11 March for A.Mm.
stations, and “B” is the maximum temperature ob-
tained for 13 March at the p.Mm. stations. The minimum
temperature may carry over to the following interval

TaBLE 3. Time interval and possible performance of three
intervals of measurements.

Nighttime
station
A.M. station  P.M. station ~ (AWDN)
Time intervals (e.g.) ~0700 ~1700 ~0000
Max temperature Problematic
Min temperature Problematic
Precipitation Good Good Good
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FiG. 1. Exemplary time intervals of measurements at Mitchell,
NE. The “A” denotes the 11 Mar minimum temperature mea-
sured at the A.M. station. The “B” denotes the 13 Mar maximum
temperature at the p.M. station.

for A.M. stations and the maximum temperature may
carry over to the following interval for p.m. stations. We
have therefore marked these as problematic in Table 3
to note that the thermodynamic state of the atmosphere
will be represented differently for A.M. and p.M. sta-
tions.

Figure 2 gives the time series of (a) the daily precipi-
tation, (b) the daily maximum air temperature, and (c)
the daily minimum air temperature. The circles delin-
eate those measurements obtained at the p.M. station
that have a high risk of QA failure when compared to
neighboring A.M. stations. The bias of the daily precipi-
tation obtained using different times of observation can
be significant and reaches 2.5 in. day ! in this example,
which will cause a flag unless adjustments or limited
comparisons are employed. Similar cases exist for the
maximum and minimum temperature, where tempera-
ture differences reach 20°F between stations with dif-
ferent time intervals. Here, we note that the QA fail-
ures are not due to sensor problems but to comparing
data from stations where the sensors are employed dif-
ferently. To avoid this problem A.M. stations can be
compared to A.M. stations, P.M. stations to P.M. stations,
etc. In this study we still compare all stations together
because we wish to see whether the time shifting and
dynamically derived station weights of the SRT can
handle the situations with mixed observation times.
Note that this problem will be solved if modernization
of the coop network provides hourly or subhourly data
at most station sites.

b. 1993 floods

Quality control procedures were applied to the data
for the 1993 Midwest floods over the Missouri River
basin and part of the upper Mississippi River basin,
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FIG. 2. Differences between measurement intervals of A.M. stations and p.M. stations lead to

the risk of QA failures of (a) precipitation, (b) maximum air temperature, and (c¢) minimum air
temperature.

where heavy rainfall and floods occurred. Data were west floods. The spatial regression test performs well
tested from 1 April 1 to 30 August. Figure 3 shows the and flags 5% ~ 7% of the data for most of the area at
interpolated spatial pattern of the fraction of flagged f = 3. We note that the heavy precipitation events
precipitation records for stations during the 1993 Mid-  were fairly uniform as seen by return periods plotted in
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Fi1G. 3. Interpolated spatial pattern of fractions of flagged precipitation records at f = 3.

Fig. 4 (Lott 1994). The spatial patterns of the fraction of
the flagged records do not coincide with the spatial
pattern of the return period. For example, the south-
eastern part of Nebraska does not show a high fraction
of flagged records although most stations have return
periods of more than 1000 yr. Also, northern Wisconsin
has a higher fraction of flagged records while the pre-

Rainfall
Return Period (years)

A-10

F1G. 4. Rainfall return period (yr) for rainfall amounts that fell
during June-July 1993, for the upper Midwest area (after Lott
1994).

cipitation for this case has a lower return period in that
area.

A more detailed analysis was applied to the state of
North Dakota. North Dakota has a significantly higher
fraction of flagged records than other states. The analy-
sis of the Grand Forks AWDN station demonstrates
that the differences in daily precipitation obtained from
stations with different times of observation contributed
to the high fraction of QA failures. Figure 2a demon-
strates that nine records had a high risk of failure dur-
ing the time period from 1 July to 15 August 1993 when
the measurements of the current station and the refer-
ence station are obtained from P.M. and A.M. stations,
respectively. The situation worsens if the measure-
ments at weather stations were obtained from different
time intervals and the distribution of stations with dif-
ferent times of observation is unfavorable. This would
be the case for an isolated A.M. or P.M. station.

Among the 13 flags at Grand Forks, 9 may be due to
the different times of observation or perhaps the size
and spacing of clouds. Four other flags occurred during
localized precipitation events, in which only a single
station received significant precipitation. For example,
Grand Forks had 1.52 in. of precipitation on 8 August,
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TABLE 4. Number of stations with the indicated number of flags (NOFs) and the fraction.
NOF 0 1 2 3 5 6 7 8 9 10
No. 1275 1107 680 314 133 62 24 7 3 1 1
FOFR 0.3535 0.3069 0.1885 0.0871 0.0369 0.0172 0.0067  0.0019  0.0008  0.0003  0.0003

FOFR: fraction of flagged records.

while the other stations had less precipitation with the
highest being 0.84 in. However, the 2-day (8 and 9 Au-
gust) precipitation for the other stations ranges from
0.39 to 2.74 in. compared with 1.53 in. at Grand Forks.
Higher precipitation entries occurring in isolation are
more likely to be identified as potential outliers. We
expect that some of these problems can be avoided by
examining the precipitation over larger intervals, for
example, summing consecutive days into event totals.

¢. 2002 drought events

Tests were conducted over the western United States
from 1 March though 30 August 2002. The number of
potential outliers is not significant for the maximum air
temperature. Among 3607 stations, only one had a

Number of flagged records
0
1

¢ 2-3
e 4.7
e 8-10

number of flags (NOF) equal to 10 while another sta-
tion had an NOF equal 9. A total of 1275 stations do not
have flagged records and 1107 stations have only one
flagged record. Table 4 lists the frequency of flags and
how many stations reached this frequency. Figure 5
shows the locations of the stations with flagged records.

Table 5 is an example of one of these stations (Agate,
Nebraska). Most of the flagged values were cases where
the measurement was higher than those at surrounding
stations. Through analysis of the hourly data from the
neighboring AWDN station at Mitchell, Nebraska (Fig.
2b), we find that only one flag, which occurred on 16
August 2002, was caused by the bias in the regression
models. All other flags (nine in total) were caused by
differences of the values obtained for different times of
observation. Here, we list an example of the spatial

Fi1G. 5. Spatial pattern of number of flagged records during the 2002 drought event in the
western United States.
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TABLE 5. Flagged records at meteorological station 250030 Agate 3E, NE.

Date T ax Flag Estimated Date Tmax Flag Estimated
6 Mar 2002 51 Failed 35.11 21 Jul 2002 94 Failed 83.07
13 Mar 2002 55 Failed 39.88 1 Aug 2002 97 Failed 80.38
2 Apr 2002 46 Failed 29.51 12 Aug 2002 92 Failed 72.18
8 Apr 2002 68 Failed 47.39 16 Aug 2002 101 Failed 89.38
24 Apr 2002 75 Failed 5245 17 Aug 2002 100 Failed 86.04

regression estimate for Agate on 6 March. The spatial
regression test at the Agate station uses the data from
six neighboring stations and the values used in the re-
gression on 6 March 2002 are 23°, 33°, 27°, 36°, and
44.7°F, which gave an estimate of 35.11°, 16°F lower
than the measurement. From the daily time series we
would say this is a good measurement given that the
measurements from 4 March to 8 March are 45.0°,
55.0°, 51.0°, 55.0°, and 22.0°F. Thus, this is a type I
error.

Besides the five highlighted stations, Fig. 5 also
shows the pattern of the flagged records as a fraction of
the total records. No significant relationship is found
between the topography and the fraction of flagged
records. Some clusters of stations with high flag fre-

quency are located along the mountains; however,
other mountainous stations do not show this pattern.
Moreover, some locations with similar topographical
setting have different patterns. For the state of Colora-
do, a high fraction of flags occurs along the foothills of
the Rocky Mountains where the mountains meet the
high plains. A high fraction was also found along Inter-
state Highways 25 and 70 in east Colorado (Fig. 6).
Along Interstate 70, one station has six flagged records
and two stations have four flagged records, and most
stations have two or more flagged records. However,
most stations do not have flagged records in the regions
to the north or to the south of Interstate 70. A similar
pattern can be identified along Interstate 25, which is
located along the seam that joins the Rocky Mountains
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and the high plains. We were not able to determine if
the higher number of flags along the interstates was a
statistical anomaly that perhaps occurred only during
the 2002 drought or if there is a physical reason (e.g.,
management, instrumentation, etc.) for the situation.

Instrumental failures and abnormal events also lead
to QA failures. Figure 7 shows the time series of Strat-
ton Station in Colorado, operated as part of the auto-
mated weather network. This station has nighttime
(midnight) readings, while all of the neighboring sites
are A.M. or P.M. stations. Stratton thus has the most
flagged records in the state (six) and the highlighted
records were flagged. We checked the hourly data time
series to investigate the QA failure in the daily maxi-
mum temperature time series for the time period from
20 April to 20 May 2002. No value was found to support
a T, of 88° for 6 May in the hourly time series; thus,
88°F appears to be an outlier. On 7 May, a high of 85°F
is recorded for the p.M. station observation interval, in
which the value of the afternoon of 6 May is recorded
as the high on 7 May. The 102°F observation of 8 May
at 0600 LT appears to be an observation error caused
by a spike in the instrument reading. The observation
of 93°F at 0800 LT 17 May is supported by the hourly
observation time series (see Fig. 7b) and is apparently
associated with a downburst from a decaying thunder-
storm.

d. 1992 Andrew Hurricane

Figure 8 shows the evolution of the spatial pattern of
flagged records from 25 to 28 August 1992 during Hur-
ricane Andrew and the corresponding daily weather
maps. The flags in the spatial pattern figures are cumu-
lative for the days indicated. The test shows that the
spatial regression test explicitly marks the track of the
tropical storm. Starting from the second landfall of
Hurricane Andrew at central-southern Louisiana, the
weather stations along the route have flagged records.
The wind field formed by Hurricane Andrew helps to
define the influence zone of the hurricane on flags.
Many stations without flags have daily precipitation of
more than 2 in. as the hurricane passes, which confirms
that the spatial regression test is performing reasonably
well.

e. Cold front 1990

The cold front events during October 1990 were
tested and only the results of the maximum air tem-
perature on 6 and 7 October are shown (Fig. 9). The
maximum air temperature dropped by as much as 40°F
during the passage of the cold front. Spatial patterns of
flags on 6 October coincide with the area traversed by
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the cold front and many stations were flagged in such
states as North Dakota, South Dakota, Iowa, and Ne-
braska. On 7 October, the cold front moved to south-
east regions beyond Nebraska and Iowa. Of course,
nearby stations on opposite sides of the cold front may
experience different temperatures thus leading to flags.
This may be further complicated when different times
of observation are involved. The cold front continues
moving and the flags also move with the front corre-
spondingly.

A similar phenomenon can be found in the test of the
precipitation and the minimum temperature. A spatial
regression test of any of these three variables can
roughly mark the movements of the cold front events.
The identified movements of the cold fronts and asso-
ciated flagging of “good records” may lead to more
manual work to examine the records. However, if we
understand the cause of the flags, we may be able to
employ a reverse flagging scheme to minimize the prob-
lem of flagging “good data.” Simple pattern recognition
tools have been developed to identify the spatial pat-
terns of these flags and reset these flags automatically.

The spatial patterns of flagged records are significant
for both the spatial regression tests of the cold front
events and the tropical storm events. However, most of
these flagged records are type I errors; thus, we devel-
oped pattern recognition tools to assist in reducing
these flags. Differences still exist between the distribu-
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FiG. 8. Daily weather maps and spatial pattern of flagged records for the 1992 Andrew Hurricane events.

tion patterns of the flagged records for the cold front from day to day. Thus, stations may be switched in a
event and the tropical storm events due to the charac- 24-h period from observing on the warm side of the
teristics of cold front events and tropical storm events. front to observing on the cold side. Some cold fronts
These differences include the following. move rapidly thus creating a large influence zone in

their wake where a significant number of stations
1) The influence zone of the cold front relative to QC may be flagged. The boundary between no rain or

is determined by how rapidly the front advances light rain and heavy rain determines the zone of
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FIG. 9. Spatial patterns of flagged records for cold front events and related fronts. The temperature
map is the interpolated maximum temperature difference between 6 and 7 Oct 1990. The colored front
is on 7 Oct, and the black one is on 6 Oct. The flags are the QA failures on that day.

influence on QC in tropical storms. The influence
zone of the tropical storms are smaller and only the
stations along the storm route and the neighboring
stations have flags.

2) Cold fronts exert influences on both the air tem-
perature and precipitation. The temperature differ-
ences between the regions immediately ahead of the
cold fronts and regions behind can reach 20° ~ 40°F.
The precipitation events caused by the cold fronts
may be significant, depending on the moisture in the
atmosphere during the passage. The tropical storms
generally produce a significant amount of precipita-
tion. A few inches of rainfall in 24 h is very common
along the track because the tropical storms generally
carry a large amount of moisture.

f- Reset the flags for cold front events and
hurricanes

Some measurements during the cold fronts and the
hurricane were valid but flagged as outliers due to the
effect on QC tests of the considerable temperature
changes caused by the cold front passages and the
heavy precipitation occurring in hurricanes. We devel-
oped a simple spatial scheme to recognize regions
where flags have been set due to type I errors. The
stations along the cold front may experience the mixing
situation where some stations have been affected by the
cold fronts and others have not. A complex pattern

recognition method can be applied to identify the in-
fluence zone of the cold fronts through the temperature
changes [e.g., using some methods described in Jain et
al. (2000)]. In this paper, we use the simple rule to reset
the flag given that significant temperature changes oc-
cur when the cold front passes. The mean and the stan-
dard deviation of the temperature change can be cal-
culated as

AT = AT,
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where AT is the mean temperature change of the ref-
erence stations, AT} is the temperature change at the ith
station for the current day, n is the number of neigh-
boring stations, and o, 1 is the standard deviation of the
temperature change for the current day. A second
round test is applied to records that were flagged in the
first round:

AT — f'op,r = AT = AT + f'opnps (6)

where AT is the difference between maximum or mini-
mum air temperature for the current day and the last
day. The cutoff value f’ takes a value of 3.0. The test
results for the 7,,,, with this refinement are shown in

max

Fig. 10 for 7 October 1990. The results obtained using
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the refinements described in this section were labeled
“modified SRT” and the results using the original SRT
were labeled “original SRT” in Figs. 10 and 11. Of the
291 flags originally noted only 41 flags remain after the
reset phase. The daily temperature drops more than
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OCT. 7, 1990

¥ Modified SRT
¢ Original SRT

F16. 10. All points shown were flagged by the original SRT method, while the thumbtacks
were those that are flagged by the modified SRT method for T,,,,,. The filled circles are those
that are reset by the modified SRT method.

20°F at most stations where the flags were reset and the

largest drop is S5°F.

Aug. 20 - 29, 1992
* 1 flag for modified SRT
e 2 flags for modified SRT
« 1 flag for original SRT
e 2 flags for original SRT
Stations without flag P

F1G. 11. Reset flags for Hurricane Andrew. The flags are the cumulative flags starting from
20 to 29 Aug 1992. The flags by the modified SRT method overlay the flags by the original
SRT method.

{ = count(p; = Pipreshold)s
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For the heavy precipitation events, we compare the
amount of precipitation at neighboring stations to see
whether heavy precipitation occurred. We use a similar
approach as for temperature to check the number of
neighboring stations that have significant precipitation:

)
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where the p; is the daily precipitation amount at a
neighboring station and p,esnoia 18 @ threshold beyond
which we recognize that a significant precipitation
event has occurred at the neighboring station, for ex-
ample, 1in. When { = 2 and p < py;,p,, We reset the flag.
Here, p is the current precipitation amount at the sta-
tion, and pye, is the upper threshold at the station of
interest beyond which the threshold test will flag the
measurement. For this study py,, was taken as the
value for which precipitation is exceeded only 97.5% of
the time. Figure 11 shows maps of flags after the reset
process. Of the 78 flags originally noted, only 41 flags
remain after the reset phase. Most of the remaining
flags are due to the precipitation being higher than the
upper threshold, which are type I errors of the test.

4. Discussion and conclusions

The spatial regression test was applied to a number
of representative extreme wet and dry events. This
technique was successful in that the quality assurance
procedures for the extreme wet or extreme dry condi-
tion did not produce a significantly higher fraction of
flagged records than were produced during nonextreme
conditions of wetness and dryness. The spatial regres-
sion test can be applied in the quality control proce-
dures of the extreme events; however, this approach
still flagged some extreme readings that may be valid
new records. The isolated rainfall events are far more
problematic than the uniform wet conditions and the
uneven spatial distribution of the weather variables
leads to more flags. Without further QC tools, the flags
produced will need to be examined manually.

The spatial regression test does not show a significant
pattern related to the extreme wet condition or the
drought events. Some patterns of frequent flagging
were observed in the passage of cold front and tropical
storm situations. Some flagged records of maximum
temperature were caused by the different observation
times. The p.M. stations may observe higher maximum
temperature than the A.M. stations after a significant
high. These values do not conform to a diurnal cycle
even though the observations may be accurate and re-
corded correctly. Instrument failures also lead to ab-
normal measurements and these records may be
flagged in the QA procedure.

In these tests, many flags are actually type I errors.
Most of these errors can be avoided by increasing the
validity zone of the test (increasing f). However, this
measure increases the risk of producing more type II
errors while reducing the type I errors. The spatial re-
gression test is robust in identifying the extreme events,
which helps the automatic quality assurance proce-
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dures, especially for the automatic weather data net-
work.

We have developed a test to recognize the zones
where frequent flagging occurred. By identifying the
spatial patterns of the flags in the extreme events, flags
associated with type I errors can be safely reset. In this
paper, the mean and the standard deviation of tempera-
ture changes of the reference stations were applied to
discriminate whether a cold front event affects the sta-
tion of interest. The test indicates that the procedures
can successfully reset the flags. The modified SRT ap-
proach works well for all the cold events when adopting
the simple statistical approach to reset the flags. The
flags for precipitation associated with the hurricanes
can also be reset by referring to the precipitation events
at neighboring stations. Further research to optimize
the performance of these methods is under way.
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