

HDF efforts to improve data preservation

Mike Folk
The HDF Group

ESIP Federation Summer Meeting 2009

HDF = Hierarchical Data Format

- HDF5 is the second HDF format
 - First release was in 1998
- HDF4 is the first HDF format
 - Originally called HDF
 - First release was 1988

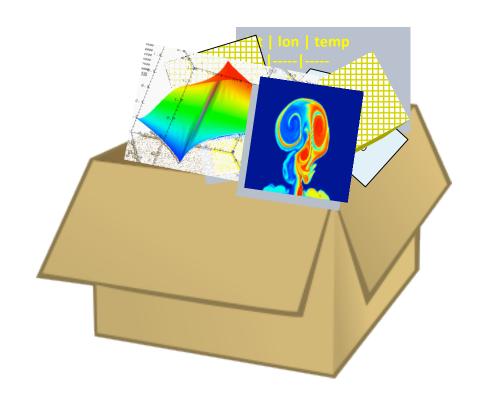
HDF5 Technology Platform

HDF5 Data Model

- Defines the "building blocks" for data organization and specification
- Files, Groups, Links, Datasets, Attributes, Datatypes

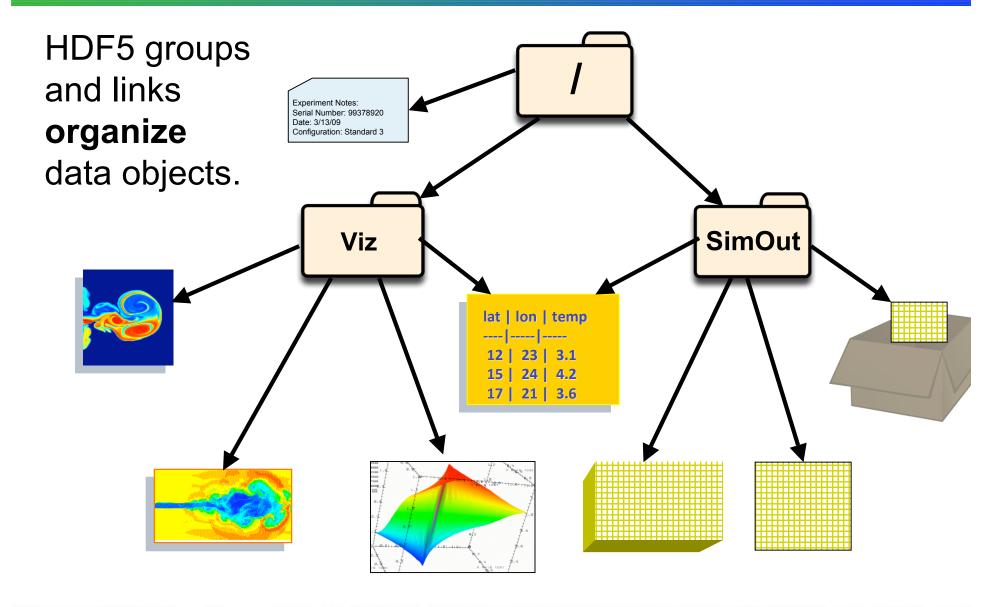
HDF5 Software

- Tools
- HDF5 Library
 - C, Fortran, C++ Language Interface


HDF5 Binary File Format

- Bit-level organization of HDF5 file
- Defined by HDF5 File Format Specification

HDF5 File


An HDF5 file is a **container** that holds data objects.

An HDF5 file is not necessarily a file on a filesystem.

HDF5 Groups and Links

Two Questions

Al Fleig (1990)

Ben Kobler (1996)

"What makes a good archive format?" (1997, Folk)

"Attributes of File Formats for Long-Term Preservation of Scientific and Engineering Data in Digital Libraries" (2002, Folk and Barkstrom)*

*http://www.hdfgroup.org/projects/nara/Sci_Formats_and_Archiving.pdf

WHAT MAKES A GOOD ARCHIVE FORMAT? (2002)

- Ease of Archival Storage
 - Compactness
 - Size
 - Ability to aggregate many objects in a single file.
- Ease of Archival Access
 - Raw I/O efficiency
 - Ease of subsetting

- Usability
 - Popularity
 - Availability of readers
 - Ability to embed data extraction software in the files
 - Ease of implementing readers
 - Simplicity
 - Ability to name file elements

WHAT MAKES A GOOD ARCHIVE FORMAT? (2002)

- Data Scholarship Enablement
 - Provenance traceability
 - Rigorous definition
 - Self-describing
 - Citability
 - Referential extensibility
 - URN embedding capability

- Support for Data Integrity
 - Source verification
 - File corruption detection
 - File corruption correction

- Maintainability and Durability
 - Long-term institutional support
 - Suitability for a variety of storage technologies
 - Stability
 - Formal (BNF- or XML-like) description of format
 - Multi-language implementation of library software
 - Open Source software or equivalent

Technological approaches

- HDF5 Archival Information Package (AIP) to archive HDF EOS2 data and metadata
 - A NOAA Scientific Data Stewardship project
 - A collaboration with Ruth Duerr (NSIDC)
- HDF5 AIP in METS
 - Define HDF5 AIP
 - Tool to create and edit HDF5 AIP
 - Collaboration with iRODS

Create alternate views of the data

- netCDF harmonies
 - netcdf API for HDF4 (1992)
 - Access to certain EOS data through netCDF-4
 API
 - netCDF-4
- FITS harmonization (1998)
- Simplified access to data via independent mapping of hdf4 data with XML

Define durable but evolvable model, features, format

- Simple, comprehensive, extensible data model
- Scalable size, complexity
- "User block"

"Evolve with compatibility"

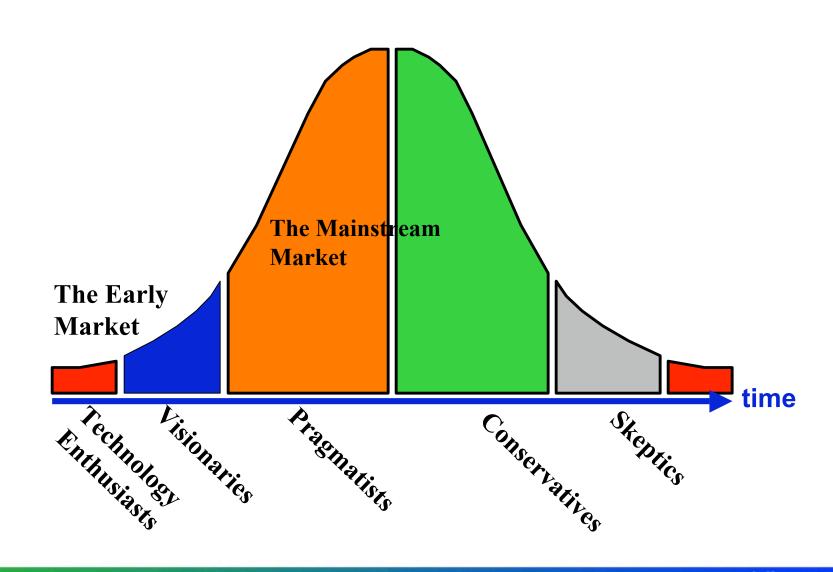
- Develop guidelines to keep evolution under control
- Develop process to ensure cross-generational compatibility

Organizational and social strategies

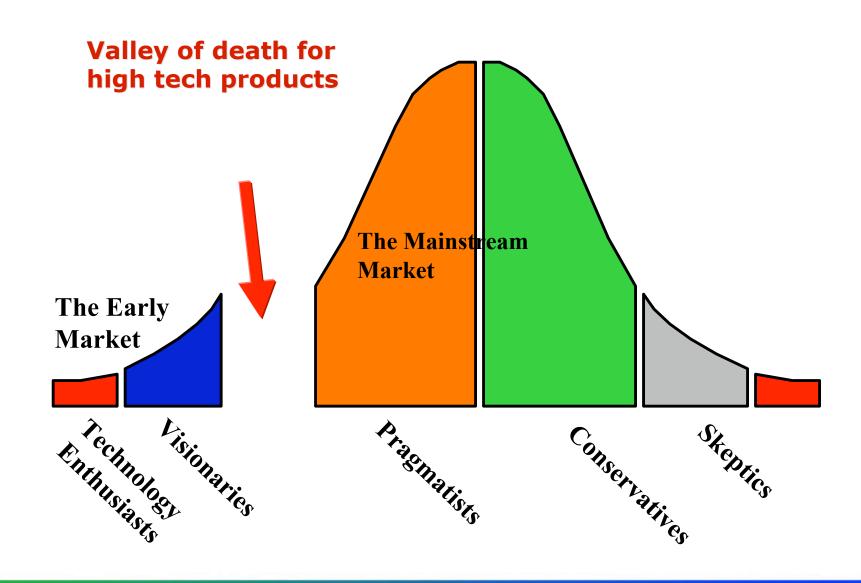
HDF Group Mission

To ensure long-term accessibility of HDF data through sustainable development and support of HDF technologies.

HDF Group Challenges


- Establish a mindset that values long-term preservation mission
- Find a business model that is sustainable
- Develop sustainability assets: funding, knowledge, people

Cross the Chasm From innovators/visionaries To pragmatists



Technology Markets

Crossing the chasm

Broaden the base - increase the need for long-term support

- Diverse application domains
- Diverse institutional types (govt, commercial, academic)
- Vendors
- More large, stable institutional use and support
- Whole product support
 - Tools
 - technology interoperability
 (iRODS, opendap, XML, RDBMS, MATLAB, ...)

Promote standard usage within domains

- Examples
 - HDF-EOS
 - CGNS
 - HDF Time history (Aerospace)
 - NeXuS
 - BioHDF
- components
 - Unified data model
 - API and implementation (preferably multi-language)
 - Tools
 - Lots of data

Steal ideas from successes, such as netCDF, PDF, FITS, TIFF, PDS

Thank you.