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human health and safety, serving as an early-warning system 
for hazardous environmental conditions, such as poor air 
and water quality (e.g., Glasgow et al. 2004, Normander et al. 
2008), and natural disasters, such as fires (e.g., Hefeeda and 
Bagheri 2009), floods (e.g., Young 2002), and earthquakes 
(e.g., Hart and Martinez 2006). Collectively, these changes 
in the technological landscape are altering the way that 
environmental conditions are monitored, creating a plat-
form for new scientific discoveries (Porter et al. 2009).

Although sensor networks can provide many benefits, 
they are susceptible to malfunctions that can result in lost 
or poor-quality data. Some level of sensor failure is inevi-
table; however, steps can be taken to minimize the risk of 
loss and to improve the overall quality of the data. In the 
ecological community, it has become common practice to 
post streaming sensor data online with limited or no quality 
control. That is, these data are often delivered to end users 
in a raw form, without any checks or evaluations having 
been performed. In such cases, the data are typically released 
provisionally with the understanding that they could change 
in the future. However, when provisional data are made 
publically available before they have been comprehensively 
checked, there is the potential for erroneous or misleading 
results.

Streaming sensor networks have advanced ecological   
research by providing enormous quantities of data 

at fine temporal and spatial resolutions in near real time 
(Szewczyk et al. 2004, Porter et al. 2005, Collins et al. 2006). 
The advent of wireless technologies has enabled connec-
tions with sensors in remote locations, making it possible to 
transmit data instantaneously using communication devices 
such as cellular phones, radios, and local area networks. 
Advancements in cyberinfrastructure have improved data 
storage capacity, processing speed, and communication 
bandwidth, making it possible to deliver to end users the 
most current observations from sensors (e.g., within min-
utes after their collection). Recent technological develop-
ments have resulted in a new generation of in  situ sensors 
that provide continuous data streams on the physical, 
chemical, optical, acoustical, and biological properties of 
ecosystems. These new types of sensors provide a window 
into natural patterns not obtainable with discrete measure-
ments (Benson et al. 2010). Techniques for rapidly process-
ing and interpreting digital data, such as webcam images in 
investigations of tree phenology (Richardson et al. 2009) and 
acoustic data in wildlife research (Szewczyk et al. 2004), have 
also enhanced our understanding of ecological processes. 
Access to near-real-time data has become important for 

BioScience 63: 574–585. ISSN 0006-3568, electronic ISSN 1525-3244. © 2013 by American Institute of Biological Sciences. All rights reserved. Request 

permission to photocopy or reproduce article content at the University of California Press’s Rights and Permissions Web site at www.ucpressjournals.com/

reprintinfo.asp. doi:10.1525/bio.2013.63.7.10

Quantity is Nothing without Quality: 
Automated QA/QC for Streaming 
Environmental Sensor Data

John L. Campbell, Lindsey E. Rustad, John H. Porter, Jeffrey R. Taylor, Ethan W. Dereszynski, 
James B. Shanley, Corinna Gries, Donald L. Henshaw, Mary E. Martin, Wade M. Sheldon, and 
Emery R. Boose

Sensor networks are revolutionizing environmental monitoring by producing massive quantities of data that are being made publically available 
in near real time. These data streams pose a challenge for ecologists because traditional approaches to quality assurance and quality control are no 
longer practical when confronted with the size of these data sets and the demands of real-time processing. Automated methods for rapidly identi-
fying and (ideally) correcting problematic data are essential. However, advances in sensor hardware have outpaced those in software, creating a 
need for tools to implement automated quality assurance and quality control procedures, produce graphical and statistical summaries for review, 
and track the provenance of the data. Use of automated tools would enhance data integrity and reliability and would reduce delays in releasing 
data products. Development of community-wide standards for quality assurance and quality control would instill confidence in sensor data and 
would improve interoperability across environmental sensor networks.

Keywords: computers in biology, informatics, instrumentation, environmental science



Biologist’s Toolbox

www.biosciencemag.org 	 July 2013 / Vol. 63 No. 7  •  BioScience   575   

Biologist’s Toolbox

As streaming sensor data become more common, there is 
an increasing need for automated, algorithm-based methods 
to check and correct data to ensure that products posted 
online in near real time are of the highest quality. Sensor 
network technology is becoming mainstream at a time 
when scientific data quality is being increasingly scruti-
nized (COSEPUP 2009). These new data streams require 
automated quality assurance (QA) and quality control (QC; 
together, QA/QC), because the manual methods that ecolo-
gists have historically used are inadequate for the volumes of 
data produced by sensor networks and the time constraints 
imposed by near-real-time data processing. Automated 
QA/QC also expedites postprocessing (e.g., gap filling, 
drift correction) so that the final data are released sooner. 
Development of community-wide QA/QC standards will 
improve confidence in the data and will enhance the quality 
of cross-site syntheses.

Recent interest and investment in large-scale envi-
ronmental observatories (e.g., the National Ecological 
Observatory Network [NEON], the Ocean Observatories 
Initiative, the Arctic Observatory Network, the Critical 
Zone Observatory) have highlighted a need for automated 
and standardized approaches to QA/QC as ecological 
research enters the era of “big data” (Hamilton et al. 2007, 
Lynch 2008). In ecology and related environmental sci-
ences, most individual sensor network data sets are still 
relatively small (in the gigabyte range or less), although, in 
aggregate, their volume may approach the tera- to petabyte 
per year data sets found in other fields (e.g., astronomy, 
physics, medicine). However, a shift toward larger individ-
ual ecological data sets is occurring. For example, NEON 
sites are projected to collectively generate 200–400  tera-
bytes per year (Schimel 2011). In addition to the sheer 
volume of these data, the large variety of sensor types can 
make them challenging to manage.

In the present article, we discuss QA/QC in the context 
of environmental sensor networks, drawing concepts from 
diverse disciplines. To understand complex ecosystem func-
tioning, many different types of sensors are needed. Here, 
we focus on data collected with in  situ sensors and do not 
discuss QA/QC for images, which is a topic that is being 
addressed by the photogrammetry and remote sensing 
community (e.g., Shuai et al. 2008, Honkavaara et al. 2009). 
We identify reasons that sensors fail and how these failures 
can be minimized or avoided. We then describe methods 
for detecting and flagging suspect data and procedures for 
incorporating corrective measures into data streams. Finally, 
we highlight the best practices and approaches for imple-
menting automated QA/QC procedures to facilitate broader 
adoption by the ecological community.

QA versus QC
The concepts of QA and QC are often used together and are 
closely related, but each has a distinct meaning. The major 
difference is that QA is process oriented, whereas QC is prod-
uct oriented. In the context of sensor networks, this leaves 

much room for interpretation, because it is difficult to deter-
mine when the data become a product. For our purposes, 
we define QA as a set of processes or steps taken to ensure 
that the sensor network and protocols are developed and 
adhered to in a way that minimizes inaccuracies in the data 
produced. The purpose of QA is to produce high-quality 
data while minimizing the need for corrective measures to 
improve data quality. QC, however, occurs after the data 
are generated and tests whether they meet the necessary 
requirements for quality outlined by the end users. QA is a 
proactive or preventive process to avoid problems; QC is a 
process to identify and flag suspect data after they have been 
generated.

Many QA/QC procedures can be automated (Shafer 
et  al. 2000, Durre et  al. 2010). For example, an automated 
QA procedure might monitor the cumulative depth of 
water in a rain gauge and alert a technician when it needs 
to be emptied. An automated QC procedure might iden-
tify anomalous spikes in the data and flag them. Even 
though it is almost always necessary to have some level of 
human intervention and inspection in QA/QC (Fiebrich and 
Crawford 2001, Fiebrich et al. 2006, Peppler et al. 2008), the 
inclusion of automated QA/QC is often an improvement, 
because it ensures consistency and reduces human bias. 
Automated QA/QC is also more efficient at handling the 
vast quantities of data that are being generated by streaming 
sensor networks and reduces the amount of human inspec-
tion required. Because automated QA/QC can be performed 
instantaneously (i.e., as the data are collected), inaccurate 
data are flagged and corrected more quickly than can be 
done manually. However, great care must be taken to ensure 
that valid data are not removed and that all processing steps 
are well documented so that they can be evaluated. Fully 
automated QC has limitations: There is a risk that real and 
potentially important phenomena will be ignored, such as 
when a real but extreme value is censored for falling outside 
an expected range. To ensure that this does not happen, 
data flagged as suspect should be reviewed carefully, and 
the raw (unmanipulated, preprocessed) data should always 
be saved.

QA
Environmental sensors can produce poor-quality data or 
fail completely for many reasons (Ganesan et  al. 2004). 
They can be damaged or destroyed both by natural phe-
nomena, such as floods, fire, lightning strikes, and animal 
activity (figure  1), and by malicious human activity (e.g., 
theft, vandalism). Sensors can also malfunction when they 
are not  maintained properly or when they are operated in 
unsuitable environments. Loss or inadequate supply of elec-
tricity can cause sensor network faults, as can power surges 
(Suri et al. 2006). Even when sensors are working properly, 
the data can be corrupted during transmission because 
of factors such as adverse environmental conditions, an 
inadequate power supply, electromagnetic interference, and 
network congestion (Hill and Minsker 2006).
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When sensors stop functioning altogether, the resulting 
loss of data may be obvious (with the notable exception 
of event detectors). What is more challenging is detecting 
subtle  impairments during which data are still produced 
but with compromised quality. These types of problems 
may result from environmental conditions, such as excessive 
moisture or extreme temperatures that exceed the operating 
range of the sensor. Steps can be taken to avoid or at least 

minimize sensor failures when designing sensor networks 
and establishing protocols; however, the costs of these pre-
ventive measures must be balanced against the risk of data 
loss. Some QA procedures may seem excessive in terms of 
equipment expense or labor, but they may be warranted in 
circumstances in which there is a low tolerance for data loss.

In instances in which data are of crucial importance, 
there  may be justification for installing replicate sensors 

Figure 1. Examples of reasons that sensors malfunction: (a) a tower that broke at the Hubbard Brook Experimental Forest, 
New Hampshire, after a tree fell on a guy line (photograph: Ian Halm); (b) a meteorological station damaged by wildfire 
at the Sevilleta, New Mexico, Long Term Ecological Research Network site (photograph: Renee Brown); (c) a mud dauber 
wasp nest built on the underside of the antenna of a radar stream stage height recorder at the Baltimore, Maryland, Water 
and Environmental Research Systems test bed (photograph: Philip C. Larson); (d) mice nesting by a shaft encoder used to 
measure stream stage height at the Hubbard Brook Experimental Forest (photograph: Don Mower).
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at the same location. An even higher level of precaution 
involves installing replicate sensors on separate dataloggers 
(or other data collection systems), each with an indepen-
dent power supply. The National Oceanic and Atmospheric 
Administration’s US Climate Reference Network is an 
example of a sensor network in which the primary meteo-
rological measurements (air temperature, precipitation, soil 
moisture, soil temperature) are made with triple redun-
dancy. The high-quality data being produced at the 114 sites 
in this network ensure that a national climate signal can be 
detected over the long term with a high degree of confidence 
(Diamond et al. 2013).

Aside from minimizing data loss due to sensor failure, 
sensor replication is useful for detecting subtle anomalies 
such as calibration drift, which are often difficult to discern 
with unreplicated sensors. Drift can occur as sensor compo-
nents deteriorate over time because of age-related processes 
including corrosion, fatigue, and photodegredation. Sensor 
drift can also result from biofouling, which is especially 
common with submerged sensors and can be controlled 
with regular cleaning (Kotamäki et  al. 2009). A minimum 
of three replicate sensors is typically needed to detect drift, 
because, with only two, it is difficult to determine which 
sensor is drifting. The use of roving reference sensors (i.e., 
sensors that are rotated around locations in the network) is 
a less expensive alternative to having multiple replicate sen-
sors deployed simultaneously at each location.

Sensors require routine maintenance and scheduled cali-
bration that, in some cases, can be done only by the manu-
facturer. Ideally, maintenance and repairs are scheduled to 
minimize data loss (e.g., snow-depth sensors repaired dur-
ing the summer) or staggered in such a way that data from 
a nearby sensor can be used to fill gaps. In cases in which 
unscheduled maintenance is required, stocking replacement 
parts on site ensures that any part of the network can be 
replaced immediately.

Field technicians are often aware of sensor-related inac-
curacies resulting from routine maintenance, repairs, or 
other interruptions of service. Tracking these events is cru-
cial for identifying and understanding the origin of inac-
curate data. The once-standard field notebooks are being 
routinely replaced by weatherproof handheld computers 
to document this information. At the Hubbard Brook 
Experimental Forest in New Hampshire, technicians track 
known events on handheld devices with electronic forms 
that have pull-down menus to ensure uniformity. When 
the technician returns from the field, the digital notes are 
downloaded and automatically synchronized with the sen-
sor data using the date and time stamp. In some cases, even 
simpler automated methods suffice. For example, at the 
Virginia Coast Reserve, light sensors are installed in data-
logger boxes to indicate when they were opened to perform 
maintenance.

Although site visits will always be necessary (Fiebrich 
et al. 2006), continuous monitoring of sensor network data 
and functionality can improve response times and provides 

insight into problems so that researchers can be better 
equipped to perform field repairs. This advancement has 
enhanced QA by making it possible to monitor systems and 
evaluate data from distant locations in near real time. When 
there are problems (e.g., low battery voltage, faulty data 
transmission), alerts can be automatically issued, sending 
e-mail, text, or telephone messages to respondents (Shafer 
et al. 2000). Remote sensor access also makes it possible for 
technicians to alter programs and to troubleshoot system 
failures as they occur.

QC
Robust automated QC procedures are essential for quickly 
identifying inaccurate data. Properly functioning QC pro-
cedures will accept valid data and reject invalid data. A false 
positive result occurs when good data are falsely marked 
as invalid, and a false negative occurs when erroneous data 
are accepted as valid. Analyses of the circumstances under 
which false positive and false negative errors occur provides 
information that can be used to further adjust the QC 
procedure to achieve optimal performance (Fiebrich and 
Crawford 2001, Durre et al. 2008). The efficacy of QC pro-
cedures can be tested with synthetic data sets or real data sets 
that contain seeded errors (Hubbard et al. 2007).

Automated QC methods are becoming increasingly 
necessary as the volume of data being collected by sensor 
networks grows. Manual methods may suffice for data sets 
at the megabyte scale; however, they are not practical at the 
giga- and terabyte scales that typify large sensor networks 
(Porter et  al. 2012). QC procedures are specific to the 
type of data and the location at which they are collected. 
Consequently, there are no universal standards that are 
applicable in all circumstances. However, some common 
practices apply to most sensor data and can be customized 
by setting tolerances that are appropriate for the location 
and intended use of the data. The six QC tests listed in 
box  1 are typically applicable to most data generated by 
sensor networks and can be used to identify anomalies 
(figure 2).

Beyond these simple QC procedures, methods from 
the machine-learning community are increasingly being 
adopted for use with ecological sensor data. These methods 
represent a data-driven approach to QC, wherein statisti-
cal models or classifiers are trained (i.e., they “learn”) in 
an automated fashion using empirical data collected from 
sensors. This approach requires little knowledge about 
the sensor hardware or the phenomena being measured. 
However, it does require an archive of labeled data that con-
tains examples of faulty data, clean data, or both for model 
training and validation. Discriminative algorithms, such as 
logistic regression, can encode a functional mapping from a 
set of inputs (sensor observations) to a set of output labels 
(data-anomaly or normal observations). Generative models, 
such as Bayesian networks, learn a joint probability distribu-
tion over the process, generating both the inputs and out-
puts. In ecology, artificial neural networks, support vector 
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machines, decision trees, and probabilistic models have all 
become popular machine-learning approaches (Hill and 
Minsker 2006, Olden et al. 2008, Dereszynski and Dietterich 
2011). Software packages such as MATLAB (MathWorks, 
www.mathworks.com/products/matlab) and WEKA (Waikato 

Environment for Knowledge Analysis; University of Waikato; 
www.cs.waikato.ac.nz/ml/weka; Hall et  al. 2009) contain 
libraries for applying machine-learning algorithms to data. 
However, even with this advanced software, it can be chal-
lenging to apply these tools correctly. Care must be taken to 

Box 1. Six quality control tests applicable to most sensor network data.

Date and time. Each data point has a date and time associated with it. Because streaming sensor networks collect data in chronological 
order, the date–time pairs should be sequential. When data are collected at fixed intervals (e.g., hourly), it is possible to cross-check 
the recorded and expected date and time. When sensor data are automatically downloaded to a computer file system, comparing the 
last recorded date and time with the file system time stamp also provides a check for major datalogger clock errors and sensor failure. 
To use the time stamp effectively, it is important to know when it was applied (e.g., at the beginning, middle, or end of the sampling 
interval), and the datalogger clock must be calibrated regularly with a reference.

Range. A range check ensures that the data fall within established upper and lower bounds. These bounds can be absolute, based on 
the characteristics of the sensor or parameter measured (e.g., relative humidity must be between 0% and 100%) or based on historical 
or expected norms. Long-term data are helpful for setting appropriate bounds, providing information on extreme values (e.g., high-
est or lowest value ever recorded), statistical norms (e.g., an appropriate number of standard deviations from the mean), and similar 
metrics based on past observations. When no data exist, bounds may be established using data from nearby locations and refined as 
more data become available. Customized range tests can account for intra-annual variability, such as cyclical effects that occur over 
weeks, months, or seasons. For example, the long-term daily bounds used for air temperature measurements are narrower than the 
range for the entire year (figure 2a).

Persistence. When the same value is recorded repeatedly, it may be indicative of a bad sensor or other system failure. For example, 
wind speed typically changes continually; a constant value over a period of time therefore suggests that a problem has occurred 
(figure 2b).

Change in slope. A check for a change in slope tests whether the rate of change is realistic for the type of data collected. A sharp 
increase or decrease over a very short time interval (i.e., a spike or step function) may indicate that the sensor was disturbed or has 
malfunctioned (figure 2c).

Internal consistency. Checks for consistency evaluate differences between related parameters, such as ensuring that the minimum 
air temperature is less than maximum air temperature or that snow water equivalent is less than snow depth (figure 2d). Consistency 
checks can also determine whether data were collected under unsuitable conditions for a specific sensor. Examples include water 
temperatures recorded when the sensor was not submerged (i.e., based on corresponding water depth measurements) or when incom-
ing solar radiation was recorded at night (i.e., based on the time of day).

Spatial consistency. If no replicate sensors exist, intersite comparisons are useful, whereby data from one location are compared with 
data from nearby identical sensors (figure 2e). Several different tests for spatial consistency have been employed in streaming sensor 
network applications, including spatial regression (e.g., Hubbard and You 2005), differences in the statistical distributions of neighbor-
ing stations (e.g., Collins et al. 2006), and the Barnes objective analysis (e.g., Fiebrich and Crawford 2001).

Figure 2. Examples of sensor quality control failures (see box 1): (a) A range test: An erratic air temperature value 
(in degrees Celsius) below the lower limit established using long-term (57-year) data. For much of this record, air 
temperature was measured with a chart-recording hygrothermograph that has been replaced with a digital thermistor 
(photograph: John L. Campbell). (b) Persistence: Snow and ice coated the anemometer propeller causing a constant zero 
wind speed reading (in meters per second), despite measurable wind at the time (photograph: Al Levno). (c) Change in 
slope: An inoperable wiper caused biofilm to develop on a submerged optical sensor that measures turbidity (with the 
left cylinder in the photograph) and fluorescent dissolved organic matter (FDOM, measured in millivolts; with the right 
cylinder) in the stream. A sharp increase in FDOM occurred after the sensor was cleaned (photograph: Manual Rosario 
Torres). (d) Internal consistency: An anomalous snow depth value measured (in centimeters) with an ultrasonic sensor 
dropped below the snow water equivalent (SWE) measured with a snow pillow. Snow depth should always exceed SWE, 
which is a measure of the amount of water in the snowpack (photograph: John L. Campbell). (e) Spatial consistency: 
Air temperature (in degrees Celsius) sensors mounted vertically on a tower at 1.5 and 4.5 meters (m) from the bottom 
produced comparable values until the snowpack covered the lower sensor, insulating it from fluctuating air temperatures 
(photograph: Al Levno).
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properly divide the data into training, validation, and test 
sets. Proper tuning of learned models is also essential to 
ensure that they generalize well to unseen data and future 
observations (Solomatine and Ostfeld 2008).

Correcting inaccurate data
Defective or missing data are unavoidable and require deci-
sions on whether to remove, adjust, or replace them with an 
estimated value. In some cases, the data contain inaccuracies 

Figure 2. Please see the facing page for the caption.
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elapsed for the trend or pattern to be sufficiently character-
ized. Nevertheless, automated anomaly detection minimizes 
the response time required to detect drift (Moatar et  al. 
2001), thereby expediting the corrective process.

Flagging suspect data
Flags or qualifiers convey information about individual data 
values, typically using codes that are stored in a separate 
field to correspond with each value. Flags can be highly 
specific to individual studies and data sets or standardized 
across all data for a program or agency. No community-wide 
flagging standards currently exist for environmental data; 
however, there are often commonalities in the information 
given (table  1). Flags can be used to identify suspect data 
by  indicating failure of one or more QC checks. Moreover, 
they can provide information about how the data were 
processed, such as the method used for filling gaps. Flags 
can indicate data that exceed the acceptable measurement 
range of the instrument. They can also serve as reminders 
for scheduling maintenance. For example, when sensors are 
calibrated, the date can be stored, which enables a flag to be 
triggered when the next calibration is due. Similarly, flags 
can indicate sensor data that were collected with an expired 
calibration.

Flags may be applied at different stages of QC. Some flags 
may be only for internal purposes, so that the data quality 

analyst can review suspect data before 
releasing them to the public. Flags can 
also become a permanent part of the 
record, providing crucial knowledge 
about the data to ensure their appro-
priate use. In some cases, flags are used 
to reflect a decision about whether data 
should be used or rejected. However, 
these judgments may not be appropri-
ate in all cases, because standards may 
vary depending on the scientific goals 
(Daly et  al. 2005). A more informa-
tive, albeit challenging, approach is to 
use flags to indicate uncertainty in the 
value so that the user can decide what 
is suitable for the intended purpose.

Sensor data contain multiple sources 
of uncertainty. These uncertainties 
can be reported individually or com-
bined into a single estimate using 
standard statistical methods (e.g., the 
root-mean-square error of the indi-
vidual component errors; Lehrter and 
Cebrian 2010). Uncertainties may arise 
from measurement error associated 
with the sensor device itself or with the 
periodicity of sampling. Manufacturers 
of sensors typically report the measure-
ment error of the instrument. When 
sufficient resources permit, instrument 

but are still usable following modification. An example is 
instrument drift: When the time course of drift is known 
and  is derived from replicate sensor readings or calibrations, 
simple corrective algorithms can be applied (Horsburgh et al. 
2010). However, intermediate or nonlinear drift is more com-
mon in environmental applications and is difficult to remedy. 
For example, abrupt changes in readings following sensor 
maintenance or recalibration indicate the amount of drift that 
has occurred but not the starting point and rate of drift.

When it is not feasible to correct the data or when sensors 
fail completely, gaps arise in the record. Filling these gaps 
may enhance the data’s fitness for use, meaning that it can 
help meet specific objectives identified by data users (e.g., 
for calculating annual net fluxes). However, gap filling can 
be a complex endeavor and can lead to misinterpretation 
and inappropriate data use. The decision about whether to 
fill gaps and the selection of the method with which to do 
so are subjective and depend on factors such as the length of 
the gap (e.g., days, weeks, months), the level of confidence 
in the estimated value, and how the data are being used. 
Many different imputation techniques exist, including linear 
interpolation, estimates based on historical data, relation-
ships with other stations, and results from process-based 
models (e.g., Horsburgh et al. 2010). Some corrections can 
be applied in near real time, whereas others (e.g., sensor 
drift) can be done only after an adequate period of time has 

Table 1. Examples of flags used to provide information about the data 
collected.
Type of flag Example

Internal

 M issing value No measured value available because of equipment failure or 
another reason

  Low battery Sensor battery dropped below a threshold

  Calibration due Sensor needs to be sent back to the manufacturer for calibration

  Calibration expired Value was collected with a sensor that is past due for calibration

 I nvalid chronology One or more nonsequential date or time values

 P ersistent value Repeated value for an extended period

 A bove range Value above a specified upper limit

 B elow range Value below a specified lower limit

 S lope exceedance Value much greater or lower than the previous value, resulting in an 
unrealistic slope

 S patial inconsistency Value greatly differed from values collected from nearby sensors

 I nternal inconsistency Value was inconsistent with another related measurement

 D etection limit Value was below the established detection limit of the sensor

External 

 P ass Value passed all quality control tests and is considered valid

 E stimated Estimated value from a model or other sources

 M issing Missing value

 U ncertainty Estimate of uncertainty of the value expressed as a percent

Note: Internal flags are for field technicians and data quality analysts; external flags are what the 
public sees.
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data is based, in part, on this capacity to reproduce data 
products. Preservation of the original data set in its raw, 
unmanipulated form is crucial for reproducing any subse-
quent procedures performed on the data. Documentation 
should describe the QC level (e.g., raw data, qualifiers added, 
problematic data removed or corrected and the gaps filled) 
and contain all the necessary information used to generate 
the data, such as the source file used, data-rejection criteria, 
gap-filling method, and model parameters. This informa-
tion enables the data user to carefully scrutinize the data 
and determine whether the data-processing methods used 
are appropriate for the particular application. Reviewing 
uncorrected data may help identify real phenomena that 
could not be observed with the corrected data. Assigning 
unique identifiers to various versions of the input data, 
workflows, QC programs, and models is necessary for 
retracing steps, so that the procedures can be replicated and 
reevaluated. As software tools improve in the future, some of 
the burden of creating and maintaining provenance infor-
mation is expected to shift from the scientist to the tools 
themselves.

In recent years, various metadata standards have been 
developed for environmental data and can be applied to sen-
sors that produce streaming data. SensorML (Sensor Model 
Language), EML (Ecological Metadata Language), and 
WaterML (Water Markup Language) are all common meta-
data standards that use Extensible Markup Language (XML). 
XML is a flexible and widely used standard for encoding 
information in a format that is both human and machine 
readable, which facilitates its use in Internet applications.

Conclusions
Sensor networks are increasingly being used to monitor 
ecosystems and will soon become the standard approach 
to recording ecological phenomena around the world. 
These  sensor networks will require rapid and comprehen-
sive QA/QC to ensure the data’s quality and usefulness. 
Automated QA/QC procedures will be essential for dealing 
with this data deluge, because they can quickly process data 
and identify and correct problems in near real time without 
introducing human error. Some procedures, such as correc-
tions for drift, can be done only post  facto, so it is unlikely 
that provisional data releases will ever be entirely elimi-
nated. Moreover, it is improbable that QA/QC will become 
completely automated and replace human decisionmaking 
and intervention in the foreseeable future. Although the 
need for automated QA/QC is compelling, it can be chal-
lenging to implement. For instance, it is difficult to set QA/
QC tolerances in such a way as to minimize false positive 
and false negative errors, especially under changing envi-
ronmental conditions. Expert knowledge is often required 
to make appropriate decisions about how to treat data 
flagged as problematic. Despite the limitations of automated  
QA/QC, it can minimize the amount of human interven-
tion required, can improve the quality of the data, and can 
allow for final data products to be released more rapidly. 

uncertainty can be determined by analyzing the measure-
ments obtained from replicate sensors. Selection of the 
sample interval results in temporal uncertainty, which 
increases with interval length (e.g., Harmel and King 2005). 
Even though it may be desirable to have data with a fine 
temporal resolution, both the volume of data collected and 
the available supply of power may impose limitations (Suri 
et al. 2006).

In addition to measurement error, uncertainties may 
arise from missing data and the methods used to fill gaps. 
The length of the gap will influence the error term (e.g., 
Richardson and Hollinger 2007), which is important when 
streaming sensor data are temporally aggregated (e.g., cal-
culating a daily value from data collected at 5-minute 
intervals). When a model is used to estimate a value, there 
is uncertainty in the input data used to run the model, in 
the model parameters, and in the model’s representation 
of observed processes. The interpretation of estimates of 
uncertainty is confounded by the many possible options for 
quantifying and reporting uncertainty. It is essential that the 
sources of uncertainty be evaluated and that the methods 
used to quantify uncertainty be thoroughly described in the 
metadata, which is a nontrivial task because of the many 
potential sources of uncertainty associated with each data set 
and the complexity of error propagation.

Implementation of QA/QC
QA and QC procedures can be applied at various stages as 
data flows from sensors to the end user. Examples include 
simple programs that run on dataloggers in the field, stand-
alone computer programs that run after data are transmit-
ted to a server, and queries that are applied in a relational 
database management system. Currently, off-the-shelf soft-
ware solutions for implementing QC are fairly limited and 
have not kept pace with advances in hardware. However, 
tools are increasingly being developed for this purpose (see 
box 2).

In recent years, scientific workflow systems (e.g., Kepler, 
Pegasus, Taverna, VisTrails) have been used to implement 
QA/QC in near real time (Liu et al. 2007, Barseghian et al. 
2010, Porter et  al. 2012). Automated scientific workflows 
can compile raw data from various field sensors and per-
form a series of computations that are executed sequentially 
(figure 4). Scientific workflow systems are generally flexible, 
in that they can include a combination of programs and 
scripts written in different computer languages. They also 
typically include visualization tools for organizing proce-
dures and evaluating the output generated. An important 
strength of scientific workflow systems is that they are use-
ful for tracking the provenance (lineage) of the data and 
processing steps—information that can be collected as part 
of the workflow (e.g., Altintas et al. 2006, Belhajjame et al. 
2008).

As with all scientific data, it is important to document 
sensor network data provenance in sufficient detail to 
allow replication (Lerner et al. 2011). The reliability of the 
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Box 2. The Georgia Coastal Ecosystems Data Toolbox for MATLAB. 

Innovative software for the quality control (QC) of ecological data has been developed at the Georgia Coastal Ecosystems (GCE) Long 
Term Ecological Research Network site (Sheldon 2008). The MATLAB-based GCE Data Toolbox (https://gce-svn.marsci.uga.edu/trac/
GCE_Toolbox) automates the processing of data collected by a wide variety of datalogger systems, from initial acquisition through 
QC and the distribution of data sets and plots. QC flags can be automatically assigned using rule-based expressions defined for each 
data column (i.e., sets of algebraic or statistical comparisons that return character flags for values meeting specified criteria). Flagging 
expressions can contain references to multiple data columns, supporting complex, multicolumn dependency checks (e.g., flagging of 
all measured values when a hydrographic instrument is out of the water, determined by depth or pressure values). The example in 
figure 3a shows the QC Flag Criteria Editor menu, where the expressions are defined. In addition to automated rule-based flagging, 
flags can be assigned manually, in a spreadsheet-like data editor; graphically, by selecting data points with the mouse; and algorithmi-
cally, on the basis of parameterized models referencing external data. The graph and enlarged inset (figure 3b) show the interactive 
visualization tool that indicates flags (in red) that are automatically updated when values are changed.

Figure 3. (a) The QC (quality control) Flag Criteria Editor menu. (b) Example sensor readings. The sections in red show 
data flagged as problematic. Abbreviations: °C, degrees Celsius; m, meters; PSU, practical salinity units.
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contain embedded metadata, with information such as the 
sensor’s type, identification number, and calibration data. 
These metadata are automatically uploaded to a database 
when sensors are installed, to reduce tracking and calibra-
tion errors.

Intelligent sensor nodes can actively transmit data to 
a sensor network server, enabling its integration with 
ecological data from other networks. The expansion of 
sensor networks and improvements to streaming data 
middleware and applications are making it possible to 
compare data sets across sensor networks. Metadata 
standardization has also improved our ability to com-
pare data sets. However, no standards currently exist for  
QA/QC, which raises questions about the reliability of 
the data sets being compared and the interpretation of 
the results derived from them. Current QA/QC protocols 
and procedures are being developed independently, which 
is inefficient and costly. Studying complex ecosystem 
behavior requires many different types of sensors that 
are administered by organizations representing diverse 
disciplines. To make the best use of available resources and 
to promote interoperability among the growing number  
of sites and networks producing streaming sensor data  
(e.g., the US Long Term Ecological Research Network, 
NEON, the US Forest Service Experimental Forests 
and Ranges network, the US Geological Survey Real-
Time Water Data program, the US Natural Resources 
Conservation Service Soil Climate  Analysis network, the 
US Environmental Protection Agency Clean Air Status 
and Trends Network, the US Department of Energy 

Scientific workflow systems are making it easier to imple-
ment QA/QC, but they still require custom programming. 
The development of generic and facile QA/QC software and 
visualization tools in the future will facilitate the adoption 
of QA/QC procedures in environmental sensor network 
applications.

Improvements in sensor technology are simplifying the 
implementation of automated QA/QC. Sensors with sepa-
rate logging systems that collect data at fixed intervals are 
being replaced by intelligent sensors, which have advanced 
learning and adaptation capabilities. These sensors contain 
microprocessors that act on environmental cues (e.g., light, 
sound, motion), thus eliminating superfluous data collec-
tion and processing. Intelligent sensors consume less energy, 
because they operate for shorter periods of time, which 
minimizes the chance that the sensors will fail as a result of 
power shortages. Intelligent sensors may also have embed-
ded diagnostic capabilities to monitor their performance 
and function. Direct two-way communication with sensors 
will enable technicians to identify problems and take correc-
tive actions as those problems arise.

Sensors are becoming smaller and less expensive, which, 
when combined with advancements in communications 
and  data storage and transfer, will make it possible to 
increase the number of sensors deployed for environmental 
monitoring. Sensor redundancy will become more feasible 
as a result of these developments, which will make it easier 
to confirm values and to fill gaps. In the future, sensors 
will also have the capability of storing crucial metadata. 
For example, sensors currently being developed for NEON 

Figure 4. A simple example of a Kepler scientific workflow that checks the battery voltage of a datalogger. The workflow 
reads the last record of a datalogger file and compares the battery voltage to a critical threshold value. When the battery 
voltage drops below the threshold, an e-mail alert message is automatically sent to a technician.
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Atmospheric Radiation Measurement network), there is  
a pressing need for the development and adoption of  
QA/QC standards and best practices. For example, it 
would be useful to establish the basic QC tests that should 
be applied, the provenance information to collect, and the 
naming conventions for flags. Some of the more general 
best practices identified in this article are summarized in 
box 3 and may serve as a starting point for the development 
of QA/QC standards. Further advances toward QA/QC 
standardization will ensure the reliability of the data used 
in future synthetic activities.
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