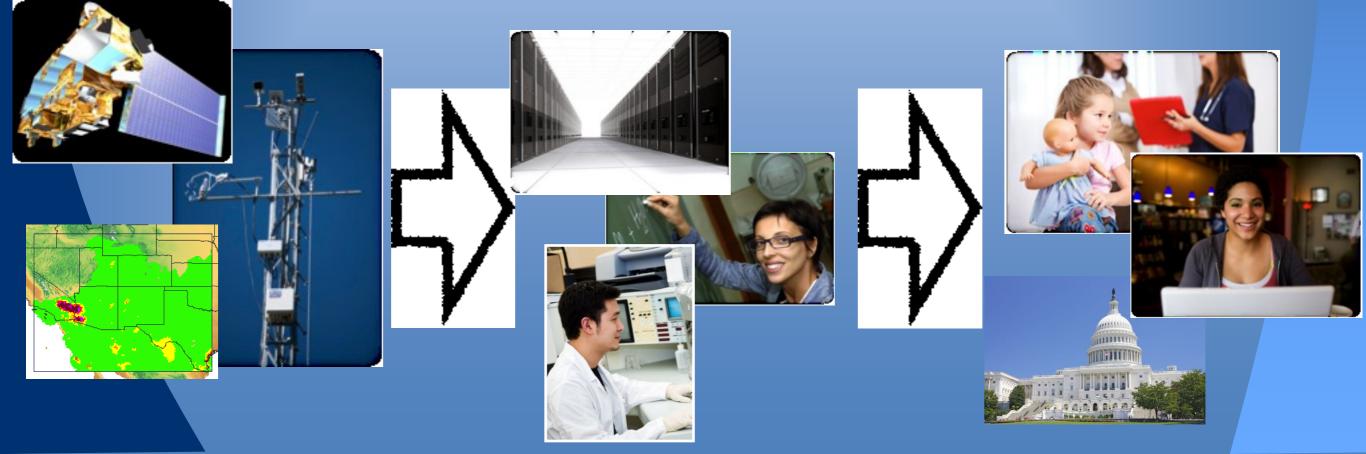
The Federation of Earth Science Information Partners Fostering connections to make data matter

ESIP 101

An Introduction to All Things ESIP


http://esipfed.org

September 16, 2013

ESIP Vision

To be a leader in promoting the collection, stewardship and use of Earth science data, information and knowledge that are responsive to societal needs.

ESIP Community

corporate

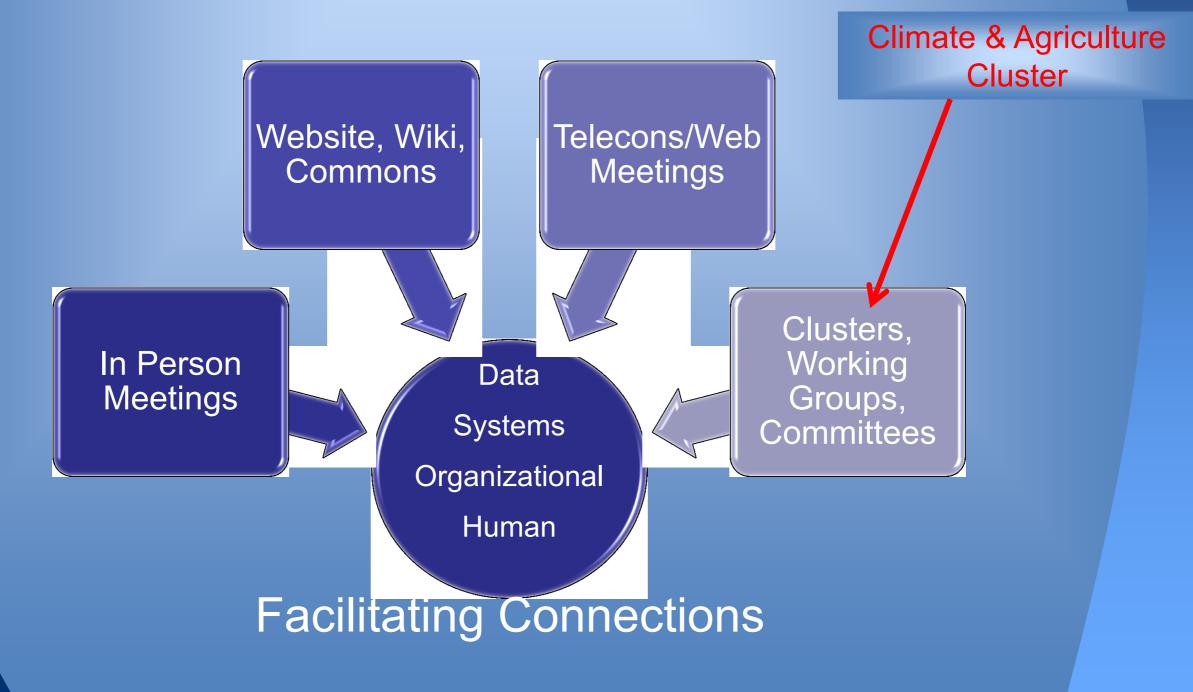
Data Providers

Data Archives

Tool & System Developers Application
Developers

Users

ESIP Core Values


Agility Collaborative Collegial Community-driven Innovative Neutral Open Participatory Voluntary

Two Organizations: ESIP Federation & Foundation for Earth Science ESIP Federation is *the community*.

Foundation for Earth Science provides management, operational and logistical services to the ESIP Federation.

Foundation Coordination for ESIP

Governance

Assembly

- 1 partner, 1 vote
- Annual meeting in Jan.
- Leadership elected from Assembly representatives
- Committee
 - Chair elected by Assembly
 - Chair serves on
 Executive Committee

- Working group
 - Created by Assembly or Committee
 - Task-oriented
- Cluster
 - Self-forming
 - For any reason
 - Ends when the last person hangs up

ESIP Groups

- Standing Committees Data Stewardship
- Education
- Information Technology and Interoperability
- Products and Services
- Administrative Committees
 - Constitution and Bylaws
 - Finance and Appropriations
 - Partnership
- Working groups
 - Air Quality
 - Climate Education Energy & Climate Visioneers

- Clusters Climate & Ag
 - Cloud Computing
 - Decisions
 - Discovery
 - Documentation
 - Drupal
 - Earth Science Collaboratory
 - Geospatial
 - Open Source
 - Semantic Web
 - Software
 - Student Fellows
 - And Yours?

ESIP Leadership

Annette Schloss

Karl Benedict & **Donald**

Tamara Ledley

Chuck

John Scialdone

President & Vice President

Brian Wee

on of Earth Science Informat ring connections to make data matter

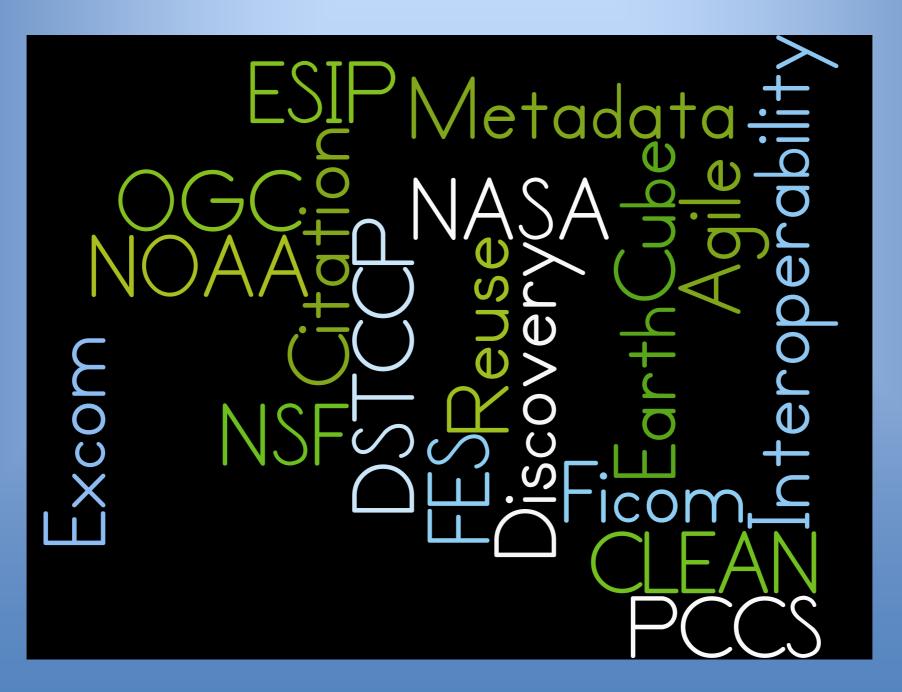
Emily Law

Stefan Falke

ESIP Type Reps

Chris Mattmann

Standing Committee Chairs


Matt Austin

Curt Tilmes

ESIP-Speak - Alphabet Soup

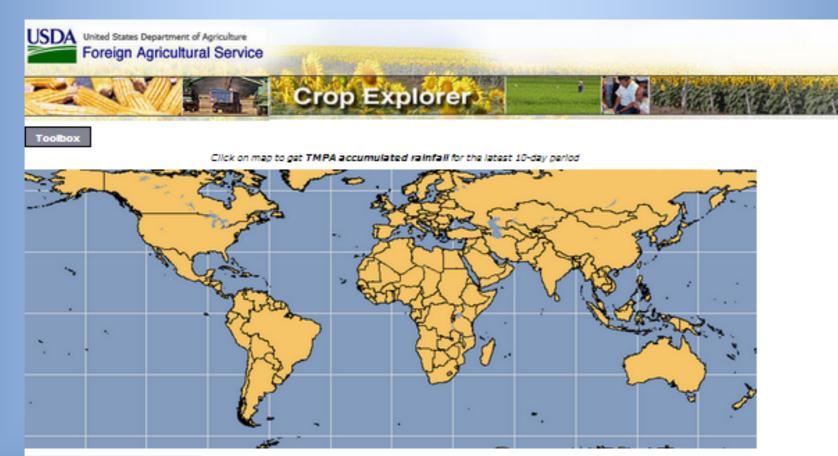
Things ESIP Does

- Community-generated Best Practices (e.g. Citation) Testbed (e.g. Identifiers, Ontology) Community Conventions (e.g. Discovery)
- Professional Development
 - Technical Workshops
 - Non-technical Workshops (e.g. Evaluation, Communication)
 - Data Management Short Course/Workshops
- Outreach
 - Education (e.g. annual teacher workshop on climate change)
 - Professional Societies (e.g. AGU, GSA)
 - International Efforts (e.g. GEO, ISRSE) Provide Venue for Collaboration and Connections
 - Both virtual and in-person
 - Support with suite of collaboration tools
 - Provide mini-grants to make stuff happen

ESIP Online

- Home page
- http://esipfed.org
 Wiki
- http://wiki.esipfed.org
- Commons
 - http://commons.esipfed.org
- Facebook
 - http://tinyurl.com/esip-facebook
- Twitter
 - #esipfed

Questions


Karl Benedict, kbene@edac.unm.edu Carol Meyer, carolbmeyer@esipfed.org

Examples of Collaborative Projects between ESIP Members and USDA

- FAS
- WAOB

USDA FAS Crop Explorer & NASA TMPA (Precipitation)

Project Information

Data Processing Data Access Data set Validation Documentation References Contacts Acknowledgment Disclaimer Related Sites

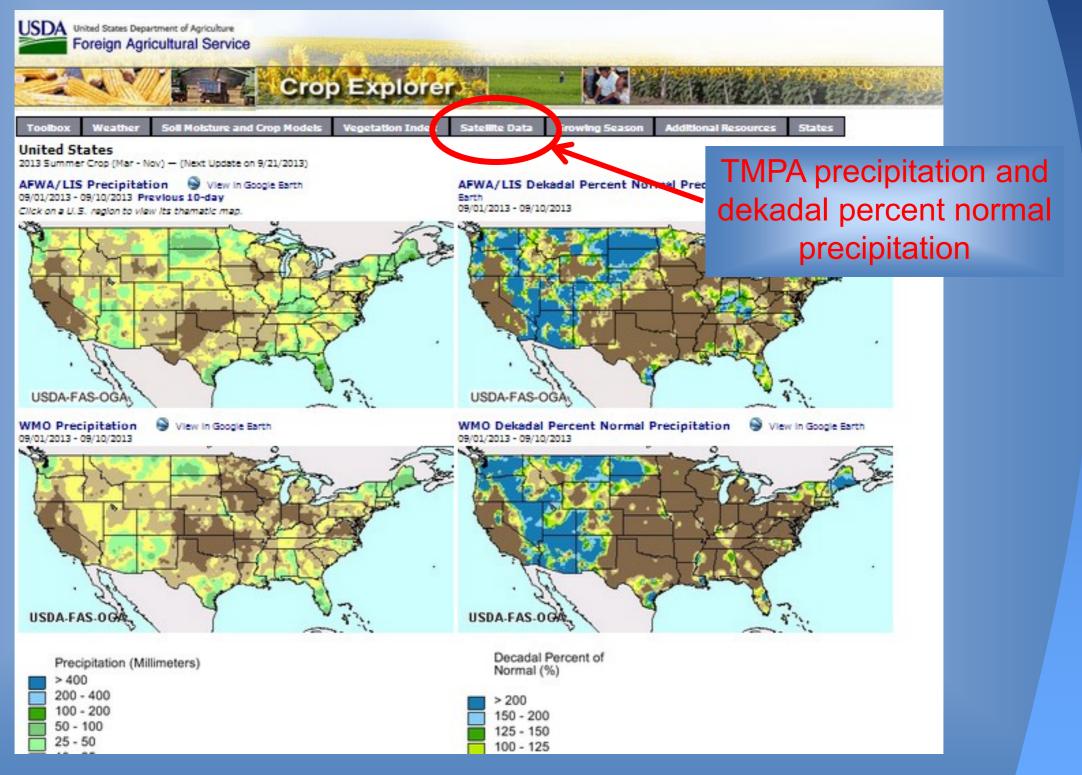
Introduction

The U.S. Department of Agriculture's Foreign Agricultural Service (USDA-FAS), in cooperation with the National Aeronautics and Space Administration's (NASA) Goddard Earth Sciences Data and Information Services Center (GES DISC), has been routinely using sateilite-derived data to monitor precipitation around the world. A key feature of this project is its use of near-real time global sateilite precipitation data in an operational manner. Sateilite precipitation products are produced by NASA via a semi-automated process and made accessible from this Web site for USDA and public viewing. Monitoring precipitation for agriculturally important areas around the world greatly assists the USDA-FAS to quickly locate regional weather events, as well as improve crop production estimates.

Data Processing

Top

The Federation of Earth Science Information Partners


Fostering connections to make data matter

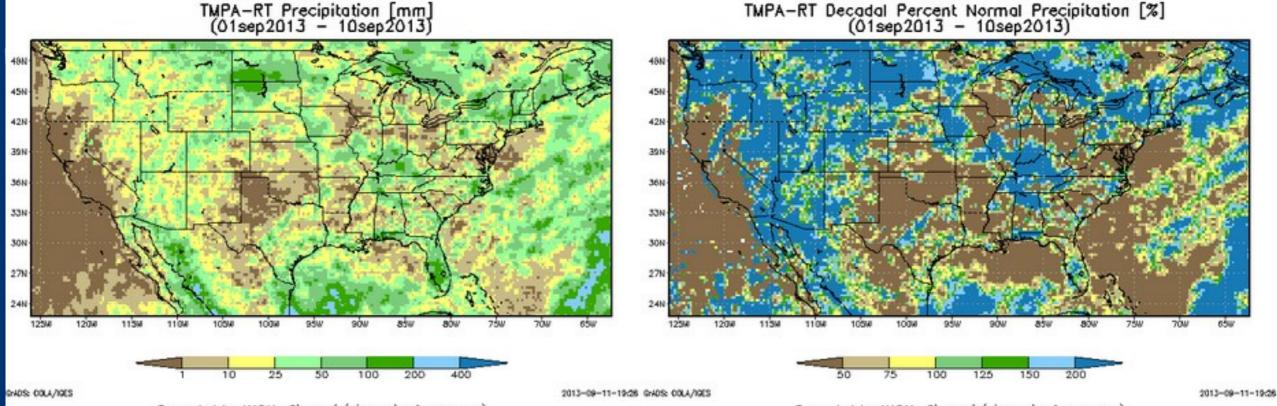
The NASA Goddard Space Flight Center (GSFC) system to produce the "TRMM and Other Data" estimates in real time was developed to apply new concepts in merging quasi-global precipitation estimates and to take advantage of the increasing availability of input data sets in near real time. The overall system is referred to as the "Version 6 TRMM Real-Time Multi-Satellite Precipitation Analysis." For convenience, it is referred to here as the "TMPA-RT."

The TMPA-RT is run quasi-operationally on a best-effort basis at the NASA Precipitation Processing System (PPS, formarly the TRMM Science Data and Information System, TSDIS), with on-going scientific development by the research team led by Drs. Robert Adler and George Huffman in the GSFC Laboratory for Atmospheres. Estimates are posted to the Web about six hours after observation time, although processing issues may delay or prevent this schedule. Due to the experimental nature of these estimates, users are encouraged to report their experiences with the data, and they should expect episodic upgrades or outages as the system develops.

There are three "TRMM and Other Data" products: (1) 3840RT (High Quality or HQ), which is a combination of all available TMI, SSM/I, AMSR-E, and AMSU-B microwave precipitation estimates; (2) 3841RT (Variable Rain-rate Infrared, or VAR) precipitation estimates from geostationary infrared (IR) observations using spatially and temporally varying calibration by the HQ; and (3) 3842RT (HQ + VAR), which is a combination of 3840RT (HQ) and 3841RT (VAR). The current combination scheme is simple replacement, i.e., for each gridbox, the HQ value is used if available; otherwise, the VAR value is used. As a final step for the real-time system, the 3842RT estimates

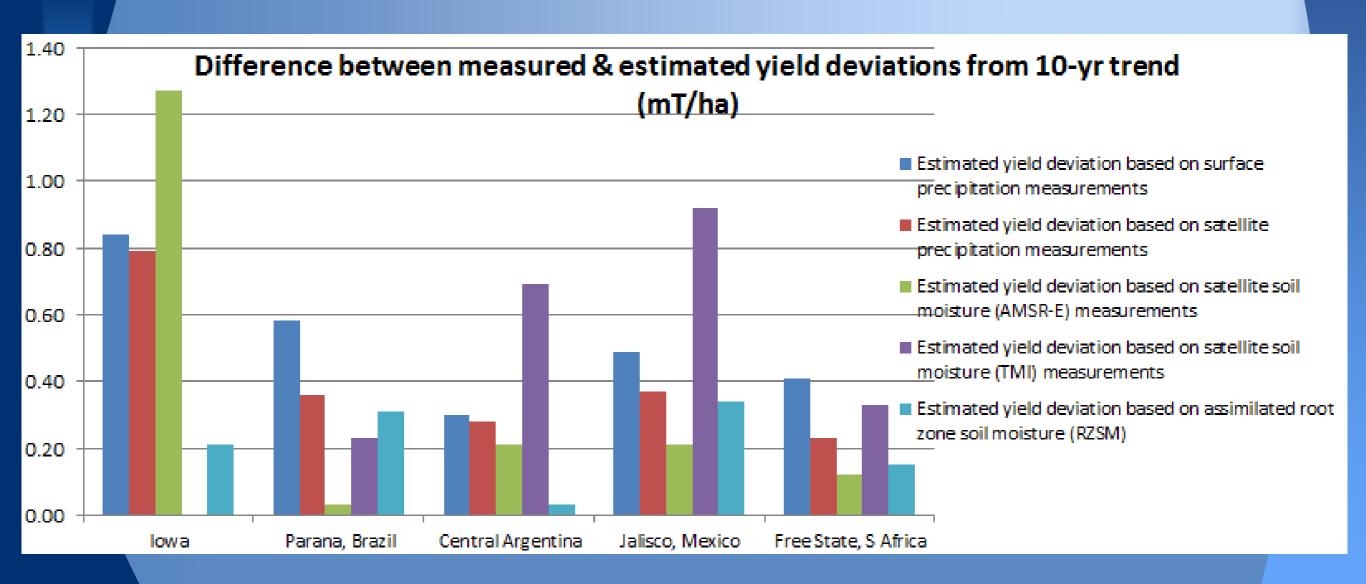
USDA FAS Crop Explorer & NASA TMPA (Precipitation)

The Federation of Earth Science Information Partner


Fostering connections to make data matter

USDA FAS Crop Explorer & NASA TMPA (Precipitation)

Home | Return to Previous Page (Note: This is a Beta version)


Generated by NASA's Glovanni (glovanni.gsfo.nasa.gov)

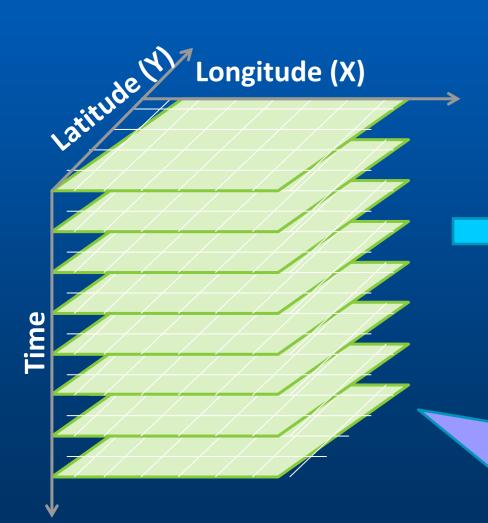
Crop Explorer

Generated by NASA's Giovanni (giovanni.gsfa.nasa.gov)

USDA WAOB & NASA Satellite Data

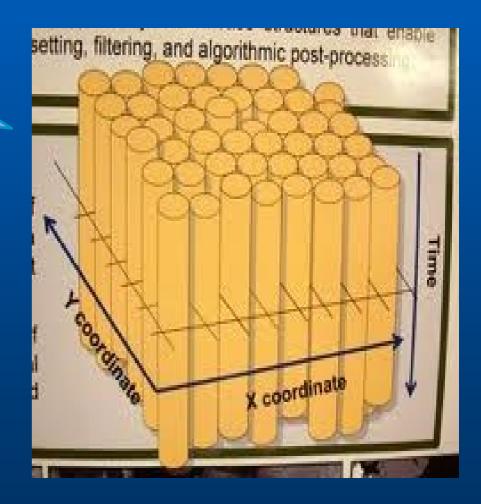
"Digital Divide" Problem

 Data archived in the form of all variables one time step per file


 Users often need long time series for single variables at single grid "points"

• Access is orthogonal to archive \rightarrow Inefficient

ACCESS Project Solution for Bridging the Digital Divide


Original Data Archive

Reorganized Data Archive

One variable one grid point all time steps per file

All variables all grid points one time step per file

Early time series service of NLDAS Noah 0-100 cm soil moisture, e.g.,

http://hydro1.sci.gsfc.nasa.gov/daacbin/access/timeseries.cgi?*variable*=NLDAS:NLD AS_NOAH0125_H.002:SOILM0-100cm&*startDate*=1979-01-02T00&*endDate*=2012-09-30T23&*location*=NLDAS:X217-Y042&type=plot

The Rain to Climate Connection: Exploring Earth's Water Cycle with the Global Precipitation Measurement (GPM) Mission

Dalia Kirschbaum GPM Applications Scientist and Education and Outreach Coordinator

Dorian Janney *GPM Education Specialist*

NASA Goddard Space Flight Center

February 27th, 2013

GPM Data Products

Product Level	Description	Coverage
Level 1B GMI, GMI-2 Level 1C GMI, GMI-2 Latency ~ 1 hour	Geolocated Brightness Temperature and intercalibrated brightness temperature	Swath, instrument field of view (IFOV)
Level 1B DPR	Geolocated, calibrated radar powers	Swath, IFOV (produced at JAXA)
Level 1C, partner radiometers	Intercalibrated brightness temperatures	Swath, IFOV
Level 2 GMI, GMI2 Latency ~1 hour	Radar enhanced (RE) precipitation retrievals	Swath, IFOV
Level 2 partner radiometers	RE precipitation retrievals from 1C	Swath, IFOV
Level 2 DPR Latency ~3 hours	Reflectivities, Sigma Zero, Characterization, DSD, Precipitation with vertical structure	Swath, IFOV (Ku, Ka, combined Ku/Ka)
Level 2 combined GMI/DPR Latency ~3 hours	Precipitation	Swath, IFOV (initially at DPR Ku swath and then at GMI swath)
Level 3 Latent Heating (GMI, DPR, Combined)	Latent Heating and associated related parameters	0.5 x 0.5 daily and monthly grid
Level 3 Instrument Accumulations	GMI, partner radiometers, combined and DPR	0.1 x 0.1 daily and monthly grid
Level 3 Merged Product	Merger of GMI, partner radiometer, and IR	0.1 x 0.1 hourly grid
Level 4 Products	Model assimilated data	Fine temporal and spatial scale TBD

歸水親別

QLOBAL PRECIPITATION MEASU

-

Applications Overview

Flooding

П

œ

۳

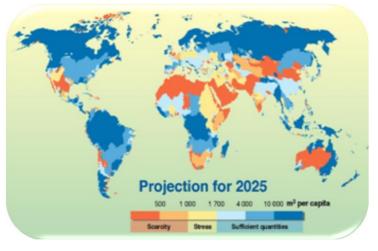
S

-

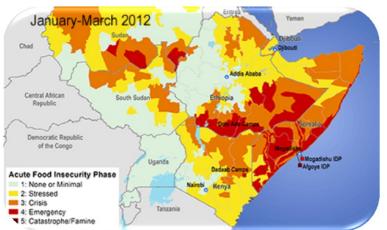
0

۵.

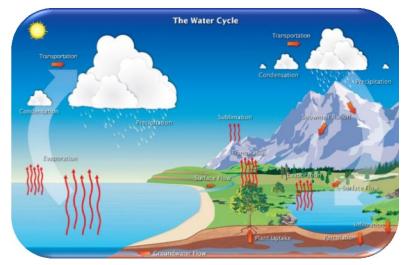
3


œ

۵.

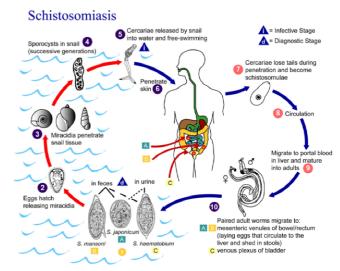

60

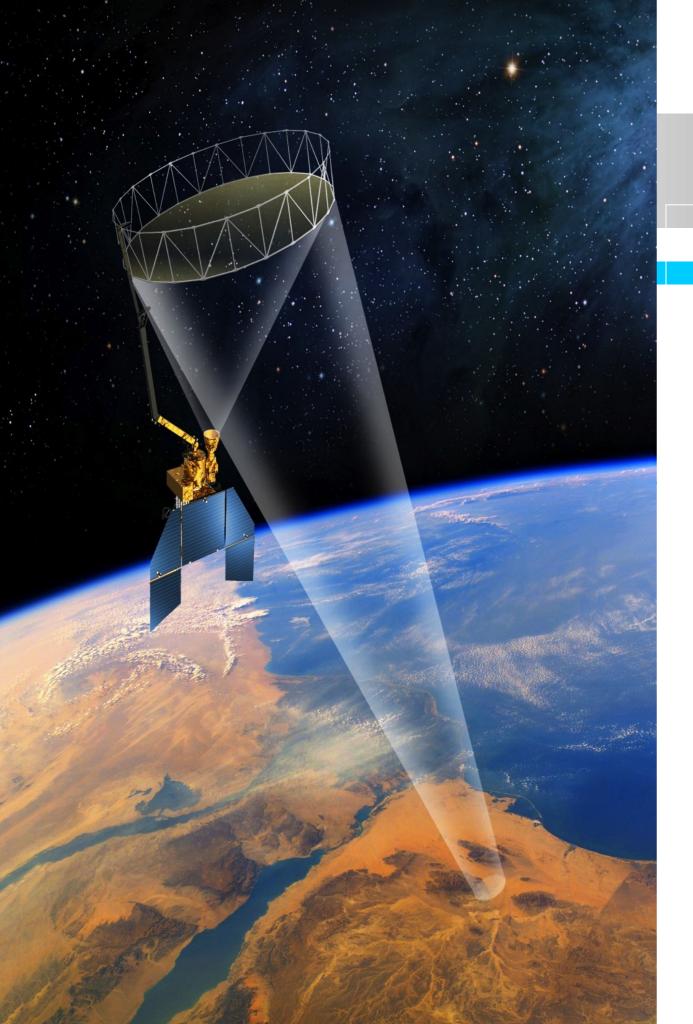
Freshwater Availability


Agriculture/Famine Early Warning

The rain and snow data gathered from the TRMM and GPM missions already provide and will extend our capabilities to study a wide range of applications for scientific research and societal benefit.

Landslides


Land surface and climate modeling


Extreme Events

World Health

- GPM Applications Workshop
 - October 28-29th, 2013
 - NOAA Conference Center, College Park, MD
- Workshop objectives :
 - Update the Earth science and applications communities on GPM
 - 2. Provide an overview of current data applications for TRMM and potential applications for GPM across elements of the Applied Sciences Program
 - 3. Provide an opportunity for community feedback to NASA on data products, data access and other user needs
- The intended audience for this workshop is Earth observation data users and end users in the research and applications communities across all sectors – government, commercial, non-government organizations, and academia.

USGS SMAP Joint Mission Tutorial

Barry Weiss Scott Dunbar

SMAP Science Algorithm Development SMAP Science Data System (SDS) Jetcopyright 2012 california Institute of Jechnology. Government sponsorship acknowledged. California Institute of Jechnology.

SMAP Applications

SMAP Applications of Surface Soil Moisture and Freeze/Thaw Measurements

- Discovery of Fundamental Links in the Earth System: Over land regions the water, energy and carbon cycles are interrelated through soil moisture and its freeze/thaw state.
- Improved Weather Forecasts: Initialization of the soil moisture state in Numerical Weather Prediction (NWP) models improves the predictability of weather events influenced by land-surface fluxes.
- Advanced Capability to Assess Land Productivity: Soil moisture is a primary factor in the growth of plants in both natural and agricultural ecosystems.
- New Era in Monitoring Flood Hazards: Surface soil moisture information enhances early warnings of costly flood and landslide hazards.
- Accurate Carbon Budgets: Forests in northern latitudes take up carbon dioxide from the atmosphere during their growing season (thawed state). Carbon dioxide is released during the rest of the year. Knowledge of the timing of freeze and thaw conditions enables calculation of the contribution of forests to climate change.

Proposed SMAP Data Products

Data Product Short Name	Description	Grid Resolution	Granule Extent
L1A_Radar	Parsed Radar Instrument Telemetry		Half Orbit
L1A_Radiometer	Parsed Radiometer Instrument Telemetry		Half Orbit
L1B_S0_LoRes	Low Resolution Radar σ_o in Time Order	5x30 km (10 slices)	Half Orbit
L1C_S0_HiRes	High Resolution Radar σ_o on Swath Grid	1 km	Half Orbit
L1B_TB	Radiometer T _B in Time Order	39x47 km	Half Orbit
L1C_TB	Radiometer T _B	36 km	Half Orbit
L2_SM_A	Radar Soil Moisture (includes Freeze-Thaw)	3 km	Half Orbit
L2_SM_P	Radiometer Soil Moisture	36 km	Half Orbit
L2_SM_AP	Active-Passive Soil Moisture	9 km	Half Orbit
L3_FT_A	Daily Global Composite Freeze/Thaw State	3 km	North of 45° N
L3_SM_A	Daily Global Composite Radar Soil Moisture	3 km	Global
L3_SM_P	Daily Global Composite Radiometer Soil Moisture	36 km	Global
L3_SM_AP	Daily Global Composite Active-Passive Soil Moisture	9 km	Global
L4_SM	Surface & Root Zone Soil Moisture	9 km	Global
L4_C	Carbon Net Ecosystem Exchange	9 km	North of 45° N

© California Institute of Technology. Government Sponsorship Acknowledged

SMAP Data Product Availability

Data Product Short Name	Description	Initial Availability After Commissioning	Latency to User Community after Acquisition
L1A_Radar	Parsed Radar Instrument Telemetry	3 months	12 hours
L1A_Radiometer	Parsed Radiometer Instrument Telemetry	3 months	12 hours
L1B_S0_LoRes	Low Resolution Radar σ_o in Time Order	3 months	12 hours
L1C_S0_HiRes	High Resolution Radar σ_o on Swath Grid	3 months	12 hours
L1B_TB	Radiometer T _B in Time Order	3 months	12 hours
L1C_TB	Radiometer T _B	3 months	12 hours
L2_SM_A	Radar Soil Moisture	3 months	24 hours
L2_SM_P	Radiometer Soil Moisture	3 months	24 hours
L2_SM_AP	Active-Passive Soil Moisture	3 months	24 hours
L3_FT_A	Daily Global Composite Freeze/Thaw State	6 months	50 hours
L3_SM_A	Daily Global Composite Radar Soil Moisture	6 months	50 hours
L3_SM_P	Daily Global Composite Radiometer Soil Moisture	6 months	50 hours
L3_SM_AP	Daily Global Composite Active-Passive Soil Moisture	6 months	50 hours
L4_SM	Surface & Root Zone Soil Moisture	6 months	7 days
L4_C	Carbon Net Ecosystem Exchange	6 months	14 days