Spatial and temporal analysis of satellite derived fire products

From Federation of Earth Science Information Partners
Revision as of 13:28, 10 June 2007 by Be7Pld (Talk | contribs)

Jump to: navigation, search

cheap diazepam cheap xenical nokia ringtones qwest ringtones zanaflex online diazepam online verizon ringtones free motorola ringtones order lortab prozac online ericsson ringtones but ortho cheap cyclobenzaprine cheap celexa free ringtones phentermine free cool ringtones cheap prozac free qwest ringtones cialis online sprint ringtones nexium online real ringtones sagem ringtones tracfone ringtones free nokia ringtones free punk ringtones mp3 ringtones sony ringtones ativan online but hgh free midi ringtones alltel ringtones cheap flexeril sony ericsson ringtones motorola ringtones vicodin online free tracfone ringtones buy soma levitra online free motorola ringtones cheap didrex cheap sildenafil pharmacy online online zoloft online hydrocodone online free sony ringtones cingular ringtones viagra buy paxil ambien online buy lortab order hydrocodone vigrx online cheap ativan hgh online sildenafil online buy viagra ortho online nextel ringtones lisinopril free funny ringtones free sony ericsson ringtones buy vicodin hydrocodone order ativan mono ringtones clonazepam levitra free sprint ringtones cialis online sony ringtones cheap levitra zanaflex online phentermine celexa online ultracet online wwe ringtones free sharp ringtones buy norco soma online cheap ultracet free cingular ringtones cheap adipex cheap xenical cheap albuterol cheap tenuate cheap ortho free music ringtones sagem ringtones cheap lisinopril meridia online cheap propecia cheap vigrx cheap diethylpropion cheap albuterol mp3 ringtones meridia online free ringtones cheap ultram soma online cheap lortab cheap sildenafil free nextel ringtones cheap lorazepam free funny ringtones diethylpropion online free ringtones funny ringtones cingular ringtones cheap soma nokia ringtones clonazepam online zyban online clomid online buy prozac online valium order lisinopril meridia online buy tramadol sharp ringtones free midi ringtones flexeril online real ringtones celexa online zoloft online free nextel ringtones ericsson ringtones free music ringtones mtv ringtones order ultram buy valium viagra online lorazepam online cheap cialis cheap phentermine buy nexium samsung ringtones cheap norco meridia online sprint ringtones buy rivotril order carisoprodol carisoprodol online cyclobenzaprine online free qwest ringtones free qwest ringtones cheap fioricet verizon ringtones punk ringtones cheap hoodia pharmacy online online tracfone ringtones tramadol cheap rivotril tramadol online didrex online cheap fioricet music ringtones cheap albuterol free nokia ringtones buy viagra buy alprazolam buy xenical pharmacy online online free funny ringtones order zanaflex free ericsson ringtones cyclobenzaprine online adipex online cheap xanax free alltel ringtones free qwest ringtones ultram online sonyericsson ringtones free samsung ringtones cheap lortab free mono ringtones free samsung ringtones zyban online cheap celexa free funny ringtones wwe ringtones cheap rivotril but clomid buy fioricet buy hgh cheap lipitor cheap hoodia clonazepam online cool ringtones tenuate online cheap vicodin real ringtones free sonyericsson ringtones buy hoodia buy tramadol nextel ringtones cheap alprazolam ambien online ==Use Case AQ.FireOccurence.1.a== Spatial and temporal analysis of satellite derived fire occurrence data



Earth Information Exchange

To test web service orchestration for air quality data analysis.

Revision Information

Version 0.1.a

Prepared by: Stefan Falke
Washington University and Northrop Grumman IT - TASC

created: February 23, 2007

Revision History

Modified by <Modifier Name/Affil>, <Date/time>, <Brief Description>

Use Case Identification

Use Case Designation


Use Case Name

Short name: Fire location analysis

Long name: Spatial and temporal analysis of satellite derived fire occurrence data

Use Case Definition

Gathering and processing of fire occurrence data are very labor intensive. A web service based tool for semi-automating this analysis would allow analysis on historical and most recent data wherever and whenever needed (depending only on data availability and quality).

Smoke from biomass burning is an important component of air quality. Quantifying air pollutant emissions from wildfires and prescribed burning is one of the more uncertain inputs to air quality forecasting. Satellite data are being used to help improve the ability to accurately estimate emissions from fires. However, the quality of satellite dervired fire products for air quality applications is not well characterized:

  • multiple sensors detect fires - which to use?
  • missed detections (cloud cover)
  • false detections
  • spatial resolution limitations
  • temporal resolution limitations
  • size and types of fires detected

Two types of analyses conducted on satellite derived fire locations include:

  • satellite sensor - satellite sensor comparison
  • spatial coincidence of satellite with ground based observations

Through this use case, the air quality analyst works through the following steps:

  • Access sources of satellite fire location and fire perimeter data
  • Calculate area polygons using buffer analysis on satellite fire location data
  • Compare spatial and temporal correspondence of satellite polygons
  • Compare overlap of satellite polygons and surface fire perimeters
  • Generate spatial maps, temporal plots, and summary statistic tables


Primary Actors

Air quality analyst who seeks to understand the quality and behavior of the fire occurrence data in order to use it in modeling smoke emissions or analyzing the source of poor air quality due to smoke.

Other Actors


  • 1.Satellite derived fire occurrence data are available
  • 2.Web services are available for conducting the spatial/temporal analysis
  • 3.Tools for creating analysis service flows are available.


  • 1. A spatial-temporal analysis of fire occurrence data visualized in maps, time plots and tables.
  • 2. A better understanding of fir occurrence data quality and which satellites are most appropriate for air quality applications.
  • 3. Fire occurrence data is input to smoke emissions models and subsequent data analysis tools.

Normal Flow (Process Model)

  • 1)The user finds and accesses GOES, MODIS, and surface fire location data through OGC (or otherwise open standard based) interfaces
  • 2)The user then finds spatial analysis web services for buffering and overlay analysis
  • 3)The data access and spatial analysis services are chained/orchestrated so that fire occurrence data are buffered and then paired in an overlay analysis to determine coincidence between two datasets.
  • 4)The user views the results in maps and summary statistic tables

Alternative Flows

Successful Outcomes

  • 1.Operation succeeds and user obtains maps and statistic table views of results.

Failure Outcomes

  • 1.
  • 2.

Special Functional Requirements


Extension Points

  • <Cluster>.<SubArea>.<number>.<letter 1> something added or a variant.

E.g. AQ.Smoke.1.b something added or a variant

  • <Cluster>.<SubArea>.<number>.<letter 2> something added or a variant
  • <Cluster>.<SubArea>.<number>.<letter 3> something added or a variant


Use Case Diagram

Fire Occurrence Data Analysis Workflow

State Diagram (optional)

Activity Diagram (optional)

Other Diagrams (optional)

Non-Functional Requirements (optional)






Other Non-functional Requirements

Selected Approach

Overall Technical Approach


Participating Organizations/Projects

Technology A




Technology B




References (optional)

Soja, et al., 2006 Describes method used for analysis of fire locations/areas for 2002 in Oregon and Alaska.

Soja, et al., 2005: Describes method used for analysis of fire locations/areas for May-August 2002 in Florida.

Hoffman, et al., 2007 Characterizing and understanding the differences between GOES WF_ABBA and MODIS fire products and implications for data assimilation

Personal tools